Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bhawanjit K. Brar is active.

Publication


Featured researches published by Bhawanjit K. Brar.


Endocrinology | 2008

The Antihypertensive Chromogranin A Peptide Catestatin Acts as a Novel Endocrine/Paracrine Modulator of Cardiac Inotropism and Lusitropism

Tommaso Angelone; Anna Maria Quintieri; Bhawanjit K. Brar; Pauline T. Limchaiyawat; Bruno Tota; Sushil K. Mahata; Maria Carmela Cerra

Circulating levels of catestatin (Cts; human chromogranin A352-372) decrease in the plasma of patients with essential hypertension. Genetic ablation of the chromogranin A (Chga) gene in mice increases blood pressure and pretreatment of Chga-null mice with Cts prevents blood pressure elevation, indicating a direct role of Cts in preventing hypertension. This notable vasoreactivity prompted us to test the direct cardiovascular effects and mechanisms of action of wild-type (WT) Cts and naturally occurring human variants (G364S-Cts and P370L-Cts) on myocardial and coronary functions. The direct cardiovascular actions of WT-Cts and human variants were determined using the Langendorff-perfused rat heart. WT-Cts dose-dependently increased heart rate and coronary pressure and decreased left ventricular pressure, rate pressure product and both positive and negative LVdP/dt. WT-Cts not only inhibited phospholamban phosphorylation, but also the inotropic and lusitropic effects of WT-Cts were abolished by chemical inhibition of beta2-adrenergic receptors, Gi/o protein, nitric oxide or cGMP, indicating involvement of beta2-adrenergic receptors-Gi/o protein-nitric oxide-cGMP signaling mechanisms. In contrast, G364S-Cts did not affect basal cardiac performance but abolished isoproterenol-induced positive inotropism and lusitropism. P370L-Cts decreased rate pressure product and inhibited only isoproterenol-induced positive inotropism and lusitropism by 70%. Cts also inhibited endothelin-1-induced positive inotropism and coronary constriction. Taken together, the cardioinhibitory influence exerted on basal mechanical performance and the counterregulatory action against beta-adrenergic and endothelin-1 stimulations point to Cts as a novel cardiac modulator, able to protect the heart against excessive sympathochromaffin overactivation, e.g. hypertensive cardiomyopathy.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Catestatin (chromogranin A344-364) is a novel cardiosuppressive agent: inhibition of isoproterenol and endothelin signaling in the frog heart

Rosa Mazza; Alfonsina Gattuso; Cinzia Mannarino; Bhawanjit K. Brar; Sandra Francesca Barbieri; Bruno Tota; Sushil K. Mahata

The catecholamine release-inhibitory catestatin [Cts; human chromogranin (Cg) A(352-372), bovine CgA(344-364)] is a vasoreactive and anti-hypertensive peptide derived from CgA. Using the isolated avascular frog heart as a bioassay, in which the interactions between the endocardial endothelium and the subjacent myocardium can be studied without the confounding effects of the vascular endothelium, we tested the direct cardiotropic effects of bovine Cts and its interaction with beta-adrenergic (isoproterenol, ISO) and endothelin-1 (ET-1) signaling. Cts dose-dependently decreased stroke volume and stroke work, with a threshold concentration of 11 nM, approaching the in vivo level of the peptide. Cts reduced contractility by inhibiting phosphorylation of phospholamban (PLN). Furthermore, the Cts effect was abolished by pretreatment with either nitric oxide synthase (N(G)-monomethyl-l-arginine) or guanylate cyclase (ODQ) inhibitors, or an ET(B) receptor (ET(BR)) antagonist (BQ-788). Cts also noncompetitively inhibited the positive inotropic action of ISO. In addition, Cts inhibited the positive inotropic effect of ET-1, mediated by ET(A) receptors, and did not alter the negative inotropic ET-1 influence mediated by ET(BR). Cts action through ET(BR) was further suggested when, in the presence of BQ-788, Cts failed to inhibit the positive inotropism of both ISO and ET-1 stimulation and PLN phosphorylation. We concluded that the cardiotropic actions of Cts, including the beta-adrenergic and ET-1 antagonistic effects, support a novel role of this peptide as an autocrine-paracrine modulator of cardiac function, particularly when the stressed heart becomes a preferential target of both adrenergic and ET-1 stimuli.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Urocortin 2 modulates glucose utilization and insulin sensitivity in skeletal muscle

Alon Chen; Bhawanjit K. Brar; Cheol Soo Choi; David Rousso; Joan Vaughan; Yael Kuperman; Shee Ne Kim; Cindy Donaldson; Sean M. Smith; Pauline Jamieson; Chien Li; Tim R. Nagy; Gerald I. Shulman; Kuo-Fen Lee; Wylie Vale

Skeletal muscle is the principal tissue responsible for insulin-stimulated glucose disposal and is a major site of peripheral insulin resistance. Urocortin 2 (Ucn 2), a member of the corticotropin-releasing factor (CRF) family, and its cognate type 2 CRF receptor (CRFR2) are highly expressed in skeletal muscle. To determine the physiological role of Ucn 2, we generated mice that are deficient in this peptide. Using glucose-tolerance tests (GTTs), insulin-tolerance tests (ITTs), and hyperinsulinemic euglycemic glucose clamp studies, we demonstrated that mice lacking Ucn 2 exhibited increased insulin sensitivity and were protected against fat-induced insulin resistance. Administration of synthetic Ucn 2 to mutant mice before the GTTs and ITTs restored blood glucose to WT levels. Administration of a CRFR2 selective antagonist to WT mice resulted in a GTT profile that mirrored that of Ucn 2-null mice. Body composition measurements of Ucn 2-null mice on a high-fat diet demonstrated decreases in fat and increases in lean tissue compared with WT mice. We propose that null mutant mice display increased glucose uptake in skeletal muscle through the removal of Ucn 2-mediated inhibition of insulin signaling. In keeping with these data, Ucn 2 inhibited insulin-induced Akt and ERK1/2 phosphorylation in cultured skeletal muscle cells and C2C12 myotubes. These data are consistent with the hypothesis that Ucn 2 functions as a local negative regulator of glucose uptake in skeletal muscle and encourage exploration of the possibility that suppression of the Ucn 2/CRFR2 pathway may provide benefits in insulin-resistant states such as type 2 diabetes.


Proceedings of the National Academy of Sciences of the United States of America | 2006

erbB2 is required for G protein-coupled receptor signaling in the heart

Alejandra Negro; Bhawanjit K. Brar; Yusu Gu; Kirk L. Peterson; Wylie Vale; Kuo-Fen Lee

erbB2/Her2, a ligandless receptor kinase, has pleiotropic effects on mammalian development and human disease. The absence of erbB2 signaling in cardiac myocytes results in dilated cardiomyopathy in mice, resembling the cardiotoxic effects observed in a subset of breast cancer patients treated with the anti-Her2 antibody herceptin. Emerging evidence suggests that erbB2 is pivotal for integrating signaling networks involving multiple classes of extracellular signals. However, its role in G protein-coupled receptor (GPCR) signaling remains undefined. Because the activation of the MAPK pathway through GPCR signaling is important for cardiac homeostasis, we investigated whether erbB2 is required for GPCR-mediated MAPK signaling in wild-type and heart-specific erbB2 mutant mice. Here we demonstrate that erbB2, but not EGF receptor, is essential for MAPK activation induced by multiple GPCR agonists in cardiac myocytes. erbB2 is immunocomplexed with a GPCR in vivo and is transactivated after ligand treatment in vitro. Coexpression of erbB2 with GPCRs in heterologous cells results in ligand-dependent complex formation and MAPK activation. Furthermore, MAPK activation and cardiac contractility are markedly impaired in heart-specific erbB2 mutants infused with a GPCR agonist. These results reveal an essential mechanism requiring erbB2 as a coreceptor for GPCR signaling in the heart. The obligatory role of erbB2 in GPCR-dependent signaling may also be important in other cellular systems.


Circulation-cardiovascular Genetics | 2010

Human Tyrosine Hydroxylase Natural Genetic Variation Delineation of Functional Transcriptional Control Motifs Disrupted in the Proximal Promoter

Kuixing Zhang; Lian Zhang; Fangwen Rao; Bhawanjit K. Brar; Juan L. Rodriguez-Flores; Laurent Taupenot; Daniel T. O'Connor

Background— Tyrosine hydroxylase ( TH ) is the rate-limiting enzyme in catecholamine biosynthesis. Common genetic variation at the human TH promoter predicts alterations in autonomic activity and blood pressure, but how such variation influences human traits and, specifically, whether such variation affects transcription are not yet known. Methods and Results— Pairwise linkage disequilibrium across the TH locus indicated that common promoter variants (C-824T, G-801C, A-581G, and G-494A) were located in a single 5′ linkage disequilibrium block in white, black, Hispanic, and Asian populations. Polymorphisms C-824T and A-581G were located in highly conserved regions and were predicted to disrupt known transcriptional control motifs myocyte enhancer factor-2 (MEF2), sex-determining region Y (SRY), and forkhead box D1 (FOXD1) at C-824T and G/C-rich binding factors specificity protein 1 (SP1), activating enhancer-binding protein 2 (AP2)], early growth response protein 1 (EGR1) at A-581G. At C-824T and A-581G, promoter and luciferase reporter plasmids indicated differential allele strength (T>C at C-824T; G>A at A-581G) under both basal circumstances and secretory stimulation. C-824T and A-581G displayed the most pronounced effects on both transcription in cella and catecholamine secretion in vivo. We further probed the functional significance of C-824T and A-581G by cotransfection of trans -activating factors in cella ; MEF2, SRY, and FOXD1 differentially activated C-824T, whereas the G/C-rich binding factors SP1, AP2, and EGR1 differentially activated A-581G. At C-824T, factor MEF2 acted in a directionally coordinate fashion (at T>C) to explain the in vivo trait associations, whereas at A-581G, factors SP1, AP2, and EGR1 displayed similar differential actions (at G>A). Finally, chromatin immunoprecipitation demonstrated that the endogenous factors bound to the motifs in cella . Conclusion— We conclude that common genetic variants in the proximal TH promoter, especially at C-824T and A-581G, are functional in cella and alter transcription so as to explain promoter marker-on-trait associations in vivo. MEF2, FOXD1, and SRY contribute to functional differences in C-824T expression, whereas SP1, AP2, and EGR1 mediate those of A-581G. The SRY effect on TH transcription suggests a mechanism whereby male and female sex may differ in sympathetic activity and hence blood pressure. These results point to new strategies for diagnostic and therapeutic intervention into disorders of human autonomic function and their cardiovascular consequences. Received August 25, 2009; accepted January 21, 2010. # CLINICAL PERSPECTIVE {#article-title-2}Background—Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis. Common genetic variation at the human TH promoter predicts alterations in autonomic activity and blood pressure, but how such variation influences human traits and, specifically, whether such variation affects transcription are not yet known. Methods and Results—Pairwise linkage disequilibrium across the TH locus indicated that common promoter variants (C-824T, G-801C, A-581G, and G-494A) were located in a single 5′ linkage disequilibrium block in white, black, Hispanic, and Asian populations. Polymorphisms C-824T and A-581G were located in highly conserved regions and were predicted to disrupt known transcriptional control motifs myocyte enhancer factor-2 (MEF2), sex-determining region Y (SRY), and forkhead box D1 (FOXD1) at C-824T and G/C-rich binding factors specificity protein 1 (SP1), activating enhancer-binding protein 2 (AP2)], early growth response protein 1 (EGR1) at A-581G. At C-824T and A-581G, promoter and luciferase reporter plasmids indicated differential allele strength (T>C at C-824T; G>A at A-581G) under both basal circumstances and secretory stimulation. C-824T and A-581G displayed the most pronounced effects on both transcription in cella and catecholamine secretion in vivo. We further probed the functional significance of C-824T and A-581G by cotransfection of trans-activating factors in cella; MEF2, SRY, and FOXD1 differentially activated C-824T, whereas the G/C-rich binding factors SP1, AP2, and EGR1 differentially activated A-581G. At C-824T, factor MEF2 acted in a directionally coordinate fashion (at T>C) to explain the in vivo trait associations, whereas at A-581G, factors SP1, AP2, and EGR1 displayed similar differential actions (at G>A). Finally, chromatin immunoprecipitation demonstrated that the endogenous factors bound to the motifs in cella. Conclusion—We conclude that common genetic variants in the proximal TH promoter, especially at C-824T and A-581G, are functional in cella and alter transcription so as to explain promoter marker-on-trait associations in vivo. MEF2, FOXD1, and SRY contribute to functional differences in C-824T expression, whereas SP1, AP2, and EGR1 mediate those of A-581G. The SRY effect on TH transcription suggests a mechanism whereby male and female sex may differ in sympathetic activity and hence blood pressure. These results point to new strategies for diagnostic and therapeutic intervention into disorders of human autonomic function and their cardiovascular consequences.


Regulatory Peptides | 2010

Human catestatin peptides differentially regulate infarct size in the ischemic-reperfused rat heart

Bhawanjit K. Brar; Erik Helgeland; Sushil K. Mahata; Kuixing Zhang; Daniel T. O'Connor; Karen B. Helle; Anne K. Jonassen

In acute myocardial infarction increased plasma levels of chromogranin A are correlated with decreased survival. At the human chromogranin A gene locus there are two naturally occurring amino acid substitution variants within the catestatin region, i.e. Gly³⁶⁴Ser and Pro³⁷⁰Leu, displaying differential potencies towards inhibition of nicotinic cholinergic agonist-evoked catecholamine secretion from sympathochromaffin cells and different degrees of processing from the prohormone. Here, we examine whether two of the variants and the wild type catestatin may affect the development of infarct size during ischemic reperfusion in the Langendorff rat heart model. The hearts were subjected to regional ischemia followed by reperfusion in the presence or absence of synthetic variants of human catestatin. Compared to the Gly³⁶⁴Ser variant both the wild type and Pro³⁷⁰Leu variants increased infarct size while decreasing the cardiac levels of phosphorylated Akt and two of its downstream targets, FoxO1 and BAD. In conclusion, these findings suggest that, in contrast to the Gly³⁶⁴Ser variant, wild type catestatin and the Pro³⁷⁰Leu variant (allele frequency ~0.3%) increased myocardial infarct size via a mechanism involving dephosphorylation of Akt and the two downstream targets during ischemic reperfusion in the isolated rat heart.


Endocrinology | 2010

Urocortin 2 Lowers Blood Pressure and Reduces Plasma Catecholamine Levels in Mice with Hyperadrenergic Activity

Yusu Gu; Kuixing Zhang; Nilima Biswas; Ryan S. Friese; Dennis H. Lin; Sushil K. Mahata; Masahiko Hoshijima; Daniel T. O'Connor; Kirk L. Peterson; Bhawanjit K. Brar

Exaggerated adrenergic activity is associated with human hypertension. The peptide urocortin 2 (Ucn 2) inhibits catecholamine synthesis and secretion from adrenal chromaffin cells in vitro and administration to mammals lowers blood pressure (BP). The chromogranin A-null mouse (Chga-/-) manifests systemic hypertension because of excessive catecholamine secretion from the adrenal and decreased catecholamine storage. In the present study, we investigated whether systemic administration of Ucn 2 could reduce BP and adrenal and plasma levels of catecholamines in vivo. Ucn 2 peptide was administered to freely moving, conscious Chga-/- and wild-type control mice. Telemetry and HPLC measured changes in BP and catecholamine levels, respectively. In both groups of mice, Ucn 2 dose-dependently decreased BP, and this effect was mediated by corticotropin factor-receptor type 2. However, in Chga-/- mice, the maximal percentage decrease of systolic BP from basal systolic BP was 37% compared with only a 23% reduction in wild-type mice (P=0.04). In Chga-/- mice only, Ucn 2 decreased adrenal and plasma levels of catecholamines as well as adrenal levels of tyrosine hydroxylase protein and phosphorylation. In vitro mechanistic studies demonstrated that Ucn 2 reduces both catecholamine secretion and tyrosine hydroxylase promoter activity, suggesting that the exaggerated action of Ucn 2 to reduce BP in the Chga-/- mouse is mediated through inhibition of both catecholamine synthesis and secretion. The data suggest that Ucn 2 may be therapeutically useful in regulating the exaggerated sympathoadrenal function of hyperadrenergic hypertension.


Regulatory Peptides | 2012

Activation of corticotropin releasing factor receptor type 2 in the heart by corticotropin releasing factor offers cytoprotection against ischemic injury via PKA and PKC dependent signaling.

Anne K. Jonassen; Anita Wergeland; Erik Helgeland; Ole D. Mjøs; Bhawanjit K. Brar

Corticotrophin-releasing factor receptor 2β (CRFR2β) is expressed in the myocardium. In the present study we explore whether acute treatment with the neuropeptide corticotrophin-releasing factor (CRF) could induce cytoprotection against a lethal ischemic insult in the heart (isolated murine neonatal cardiac myocytes and the isolated Langendorff perfused rat heart) by activating CRFR2. In vitro, CRF offered cytoprotection when added prior to lethal simulated ischemic stress by reducing apoptotic and necrotic cell death. Ex vivo, CRF significantly reduced infarct size from 52.1±3.1% in control hearts to 35.3±3.1% (P<0.001) when administered prior to a lethal ischemic insult. The CRF peptide did not confer cytoprotection when administered at the point of hypoxic reoxygenation or ischemic reperfusion. The acute effects of CRF treatment are mediated by CRF receptor type 2 (CRFR2) since the cardioprotection ex vivo was inhibited by the CRFR2 antagonist astressin-2B. Inhibition of the mitogen activated protein kinase-ERK1/2 by PD98059 failed to inhibit the effect of CRF. However, both protein kinase A and protein kinase C inhibitors abrogated CRF-mediated protection both ex vivo and in vitro. These data suggest that the CRF peptide reduces both apoptotic and necrotic cell death in cardiac myocytes subjected to lethal ischemic induced stress through activation of PKA and PKC dependent signaling pathways downstream of CRFR2.


Encyclopedia of Hormones | 2003

Corticotropin-Releasing Hormone Receptor Signaling

Bhawanjit K. Brar; Marilyn H. Perrin; Wylie Vale

The primary response to a stressful event is activation of the hypothalamic–pituitary–adrenal axis. The stress response results in the synthesis and release of corticotropin-releasing hormone (CRH) from the hypothalamus, followed by an increased release of proopiomelanocortin peptides (adrenocorticotropic hormone, melanocyte-stimulating hormones, and endorphins) from the pituitary gland. Adrenocorticotropic hormone (ACTH) acts on the adrenal gland to cause release of glucocorticoids. The initial isolation of CRH, a 41-amino acid peptide, was based on its function as the major secretagogue of ACTH. Three more mammalian CRH-related ligands, urocortin (Ucn), urocortin II (Ucn 2), and urocortin III (Ucn 3), have now been cloned. The importance of the CRH system as a major integrator of behavioral, autonomic and endocrine responses to stress is underscored by its effects on learning and memory, Alzheimers and Parkinson disease, appetite and weight control, addiction, cancer and a possible role in affective disorders such as melancholic depression. The diverse functions of the CRH peptides in physiology and disease is attributed to the downstream signaling pathways they modulate in a diverse number of cell types and tissues and disease states.


Circulation-cardiovascular Genetics | 2010

Human Tyrosine Hydroxylase Natural Genetic VariationCLINICAL PERSPECTIVE: Delineation of Functional Transcriptional Control Motifs Disrupted in the Proximal Promoter

Kuixing Zhang; Lian Zhang; Fangwen Rao; Bhawanjit K. Brar; Juan L. Rodriguez-Flores; Laurent Taupenot; Daniel T. O'Connor

Background— Tyrosine hydroxylase ( TH ) is the rate-limiting enzyme in catecholamine biosynthesis. Common genetic variation at the human TH promoter predicts alterations in autonomic activity and blood pressure, but how such variation influences human traits and, specifically, whether such variation affects transcription are not yet known. Methods and Results— Pairwise linkage disequilibrium across the TH locus indicated that common promoter variants (C-824T, G-801C, A-581G, and G-494A) were located in a single 5′ linkage disequilibrium block in white, black, Hispanic, and Asian populations. Polymorphisms C-824T and A-581G were located in highly conserved regions and were predicted to disrupt known transcriptional control motifs myocyte enhancer factor-2 (MEF2), sex-determining region Y (SRY), and forkhead box D1 (FOXD1) at C-824T and G/C-rich binding factors specificity protein 1 (SP1), activating enhancer-binding protein 2 (AP2)], early growth response protein 1 (EGR1) at A-581G. At C-824T and A-581G, promoter and luciferase reporter plasmids indicated differential allele strength (T>C at C-824T; G>A at A-581G) under both basal circumstances and secretory stimulation. C-824T and A-581G displayed the most pronounced effects on both transcription in cella and catecholamine secretion in vivo. We further probed the functional significance of C-824T and A-581G by cotransfection of trans -activating factors in cella ; MEF2, SRY, and FOXD1 differentially activated C-824T, whereas the G/C-rich binding factors SP1, AP2, and EGR1 differentially activated A-581G. At C-824T, factor MEF2 acted in a directionally coordinate fashion (at T>C) to explain the in vivo trait associations, whereas at A-581G, factors SP1, AP2, and EGR1 displayed similar differential actions (at G>A). Finally, chromatin immunoprecipitation demonstrated that the endogenous factors bound to the motifs in cella . Conclusion— We conclude that common genetic variants in the proximal TH promoter, especially at C-824T and A-581G, are functional in cella and alter transcription so as to explain promoter marker-on-trait associations in vivo. MEF2, FOXD1, and SRY contribute to functional differences in C-824T expression, whereas SP1, AP2, and EGR1 mediate those of A-581G. The SRY effect on TH transcription suggests a mechanism whereby male and female sex may differ in sympathetic activity and hence blood pressure. These results point to new strategies for diagnostic and therapeutic intervention into disorders of human autonomic function and their cardiovascular consequences. Received August 25, 2009; accepted January 21, 2010. # CLINICAL PERSPECTIVE {#article-title-2}Background—Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis. Common genetic variation at the human TH promoter predicts alterations in autonomic activity and blood pressure, but how such variation influences human traits and, specifically, whether such variation affects transcription are not yet known. Methods and Results—Pairwise linkage disequilibrium across the TH locus indicated that common promoter variants (C-824T, G-801C, A-581G, and G-494A) were located in a single 5′ linkage disequilibrium block in white, black, Hispanic, and Asian populations. Polymorphisms C-824T and A-581G were located in highly conserved regions and were predicted to disrupt known transcriptional control motifs myocyte enhancer factor-2 (MEF2), sex-determining region Y (SRY), and forkhead box D1 (FOXD1) at C-824T and G/C-rich binding factors specificity protein 1 (SP1), activating enhancer-binding protein 2 (AP2)], early growth response protein 1 (EGR1) at A-581G. At C-824T and A-581G, promoter and luciferase reporter plasmids indicated differential allele strength (T>C at C-824T; G>A at A-581G) under both basal circumstances and secretory stimulation. C-824T and A-581G displayed the most pronounced effects on both transcription in cella and catecholamine secretion in vivo. We further probed the functional significance of C-824T and A-581G by cotransfection of trans-activating factors in cella; MEF2, SRY, and FOXD1 differentially activated C-824T, whereas the G/C-rich binding factors SP1, AP2, and EGR1 differentially activated A-581G. At C-824T, factor MEF2 acted in a directionally coordinate fashion (at T>C) to explain the in vivo trait associations, whereas at A-581G, factors SP1, AP2, and EGR1 displayed similar differential actions (at G>A). Finally, chromatin immunoprecipitation demonstrated that the endogenous factors bound to the motifs in cella. Conclusion—We conclude that common genetic variants in the proximal TH promoter, especially at C-824T and A-581G, are functional in cella and alter transcription so as to explain promoter marker-on-trait associations in vivo. MEF2, FOXD1, and SRY contribute to functional differences in C-824T expression, whereas SP1, AP2, and EGR1 mediate those of A-581G. The SRY effect on TH transcription suggests a mechanism whereby male and female sex may differ in sympathetic activity and hence blood pressure. These results point to new strategies for diagnostic and therapeutic intervention into disorders of human autonomic function and their cardiovascular consequences.

Collaboration


Dive into the Bhawanjit K. Brar's collaboration.

Top Co-Authors

Avatar

Wylie Vale

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuixing Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marilyn H. Perrin

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alon Chen

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Fangwen Rao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuo-Fen Lee

Salk Institute for Biological Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge