Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bing Dang is active.

Publication


Featured researches published by Bing Dang.


electronic components and technology conference | 2008

3D silicon integration

John U. Knickerbocker; Paul S. Andry; Bing Dang; Raymond Robert Horton; Chirag S. Patel; Robert J. Polastre; Katsuyuki Sakuma; E.S. Sprogis; Cornelia K. Tsang; B.C. Webb; Steven L. Wright

Three-dimensional (3D) chip integration may provide a path to miniaturization, high bandwidth, low power, high performance and system scaling. Integration options can leverage stacked die and/or silicon packages depending on applications. The enabling technology elements include: (i) through-silicon-vias (TSV) with thinned silicon wafers, (ii) fine pitch wiring, (iii) fine pitch interconnection between stacked die, (iv) fine pitch test for known-good die, and (v) power delivery, distribution and thermal cooling technology. Applications may range from miniaturization of portable electronics like image sensors and cell phones to power efficient, high performance computing solutions such as servers and super computers. Silicon based packaging and 3D stacked die technologies have been in research studies for more than a decade at IBM and in industry, universities & consortia. IBM research experiments have included test vehicle design, build, characterization and modeling. Robust structures and processes have been developed based on (i) process learning for silicon based structures, (ii) assembly process comparisons for fine pitch chip interconnection, (iii) electrical, mechanical and thermal characterization and (iv) reliability & accelerated stress characterization. TSV technology investigations have included composite, copper and tungsten metallurgies. Wiring demonstrations ranged from sub-micron fine pitch wiring line widths & spaces to larger dimensions. I/O interconnections investigated feature sizes such as 100 I/O / mm2, 400 I/O/mm2, and interconnection features sizes which support 2500 I/O / mm2. In addition, integrated decoupling capacitors of one hundred ten nano-farads per mm2 per layer and assembly of module structures on silicon packages with ceramic or organic base packages were demonstrated. Examples of robust TSV structures and characterization, single die with silicon interposers, multiple die on a silicon package and stacked die assemblies are given along with highlights of characterization including aspects of electrical, mechanical and reliability results. This research paper describes recent advances in industry and reports advancements from IBM in the design, technical challenges and progress toward 3D chip integration structures. In addition, examples of potential applications that may take advantage of 3D integration are discussed.


Ibm Journal of Research and Development | 2008

3D chip-stacking technology with through-silicon vias and low-volume lead-free interconnections

Katsuyuki Sakuma; Paul S. Andry; Cornelia K. Tsang; Steven L. Wright; Bing Dang; Chirag S. Patel; Bucknell C. Webb; J. Maria; Edmund J. Sprogis; Sung K. Kang; Robert J. Polastre; Raymond Robert Horton; John U. Knickerbocker

Three-dimensional (3D) integration using through-silicon vias (TSVs) and low-volume lead-free solder interconnects allows the formation of high signal bandwidth, fine pitch, and short-distance interconnections in stacked dies. There are several approaches for 3D chip stacking including chip to chip, chip to wafer, and wafer to wafer. Chip-to-chip integration and chip-to-wafer integration offer the ability to stack known good dies, which can lead to higher yields without integrated redundancy. In the future, with structure and process optimization, wafer-to-wafer integration may provide an ultimate solution for the highest manufacturing throughput assuming a high yield and minimal loss of good dies and wafers. In the near term, chip-to-chip and chip-to-wafer integration may offer high yield, high flexibility, and high performance with added time-to-market advantages. In this work, results are reported for 3D integration after using a chip-to-wafer assembly process using 3D chip-stacking technology and fine-pitch interconnects with lead-free solder. Stacks of up to six dies were assembled and characterized using lead-free solder interconnections that were less than 6 µm in height. The average resistance of the TSV including the lead-free solder interconnect was as low as 21 mΩ.


international interconnect technology conference | 2008

A 3D-IC Technology with Integrated Microchannel Cooling

Deepak C. Sekar; Calvin King; Bing Dang; Todd J. Spencer; Hiren Thacker; Paul Jayachandran Joseph; Muhannad S. Bakir; James D. Meindl

A 3D-IC technology with integrated microchannel cooling is demonstrated in this paper. Fluidic interconnect network fabrication proceeds at the wafer-level, is compatible with CMOS processing and flip-chip assembly and requires four lithography steps. Measurements for single chips prior to 3D stacking reveal that each die in a two chip 3D stack may potentially exhibit a junction-to-ambient thermal resistance of 0.24°C/W. The demonstrated silicon die contain a through-silicon copper via density of 2500/cm2 integrated within the microchannel heat sink.


custom integrated circuits conference | 2008

3D heterogeneous integrated systems: Liquid cooling, power delivery, and implementation

Muhannad S. Bakir; Calvin King; Deepak C. Sekar; Hiren Thacker; Bing Dang; Gang Huang; Azad Naeemi; James D. Meindl

This paper describes a novel 3D integration technology that enables the integration of electrical, optical, and microfluidic interconnects in a 3D die stack. The electrical interconnects are used to provide power delivery and signaling, the optical interconnects are used to enable optical signal routing to all levels of the 3D stack, and the microfluidic interconnects are used to cool each level in the 3D stack and thus enable stacking of high-performance (high-power) dice. These interconnects are integrated in a 3D stack both as through-silicon vias (TSVs) and as input/output (I/O) interconnects. Design trade-offs (TSV density, power supply noise, thermal resistance, and pump size), fabrication, and assembly are reported.


IEEE Transactions on Advanced Packaging | 2010

Integrated Microfluidic Cooling and Interconnects for 2D and 3D Chips

Bing Dang; Muhannad S. Bakir; Deepak Chandra Sekar; Calvin King; James D. Meindl

Power dissipation in microprocessors is projected to reach a level that may necessitate chip-level liquid cooling in the near future. An on-chip microchannel heat sink can reduce the total thermal interfaces between an integrated circuit chip and the convective cooling medium and therefore yield smaller junction-to-ambient thermal resistance. This paper reports the fabrication, assembly, and testing of a silicon chip with complementary metal-oxide-semiconductor process compatible microchannel heat sink and thermofluidic chip input/output (I/O) interconnects fabricated using wafer-level batch processing. Ultra-small form factor, low-cost fabrication and assembly (system integration) are achieved for 2D and 3D chips, as the microchannel heat sink is fabricated directly on back-side of each chip. Through-wafer electrical and fluidic vias are used to interconnect the monolithically integrated microchannel heat sink to thermofluidic chip I/O interconnections. The feasibility of the novel fluidic I/O interconnect is demonstrated through preliminary thermal resistance measurements.


electronic components and technology conference | 2012

2.5D and 3D technology challenges and test vehicle demonstrations

John U. Knickerbocker; Paul S. Andry; Evan G. Colgan; Bing Dang; Timothy O. Dickson; Xiaoxiong Gu; Chuck Haymes; Christopher V. Jahnes; Yong Liu; Joana Maria; Robert J. Polastre; Cornelia K. Tsang; Lavanya Turlapati; B.C. Webb; Lovell B. Wiggins; Steven L. Wright

Three-dimensional (3D) chip integration with through-silicon-vias (TSVs) can enable system benefits of enhanced performance, power efficiency, and cost reduction leveraging micro-architecture designs such as 2.5D silicon packages and 3D die stacks. 2.5D silicon packages and 3D die stacks structures integrated in modules each have unique technical challenges but each can provide system benefits including lower latency and higher bandwidth compared to traditional packaging solutions. Additional system benefits using 2.5D or 3D integration can include product miniaturization or increased function in the same size product. Leveraging proper design and micro-architecture for a system application, 3D technology can aide chip manufacturability for lower costs, sub-component heterogeneous integration, modular design and sub-component design reuse, which can reduce development expense and decrease time to market. 2.5D and 3D technology can reduce interconnection length between circuits leading to lower power consumption and lower latency as well as increase the number of interconnections which supports increased bandwidth to traditional 2D off chip interconnection. Appropriate design ground rules, clocking, and electrical models should match well defined technology attributes such as TSVs and silicon to silicon interconnection electrical parametrics. In addition a wafer test methodology for known good die (KGD) and high yield assembly integration approach are important to obtain integrated 2.5D and 3D modules. For complex 3D integration, proper consideration for module or integrated die stacked with TSVs and Si to Si interconnection may require redundancy and an integral repair methodology. 2.5D and 3D technology challenges may include an increase in the power delivery and cooling requirements to meet the increased circuit density and power density of these structures. For small, low power applications such as mobile devices, 2.5D and 3D technology can provide substantial benefit through both performance benefit and power savings and lead to longer battery life for the same function. For some high performance and high power applications, the 2.5D approach simplifies heterogeneous die integration without requiring leading to increases power density and heat removal cooling density. Whereas some high performance and high power applications using 3D technology may require extensive planning for power delivery with localized power regulation and specialized cooling approaches to avoid excessive in die stack temperatures while taking advantage of performance gains that these short links between heterogeneous die can provide. 3D die stacks using multi-core processors and wide I/O DRAM, eDRAM, SRAM or cache stacks can provide high bandwidth, performance improvements with lower latency. In addition to the power delivery and thermal challenges of 2.5D and 3D described above, there are 3D fabrication and industry compatibility challenges. Technology challenges include wafer integration and finishing with TSVs, test for known-good-die (KGD), assembly and module integration. Infrastructure compatibility and use of newly evolving industry standards such as Semi-3D standards for wafer handling and JEDEC standards for wide I/O memory to name two examples. Standards for wafer shipping are underway and other 3D compatibility standards are being defined over time. This research paper describes key challenges to enable systems using 2.5D and 3D technology. The paper also highlights progress and results for 2.5D and 3D hardware demonstrations and gives an outlook on future demonstrations.


IEEE Electron Device Letters | 2006

Integrated thermal-fluidic I/O interconnects for an on-chip microchannel heat sink

Bing Dang; Muhannad S. Bakir; James D. Meindl

Power dissipation in microprocessors will reach a level that necessitates chip-level liquid cooling in the near future. An on-chip microfluidic heat sink can reduce the thermal interfaces between an IC chip and the convective cooling medium. Through wafer-level processing, integrated thermal-fluidic I/O interconnects enable on-chip microfluidic heat sinks with ultrasmall form factor at low-cost. This letter describes wafer-level integration of microchannels at the wafer back-side with through-wafer fluidic paths and thermal-fluidic input/output interconnection for future generation gigascale integrated chips.


electronic components and technology conference | 2008

3D stacking of chips with electrical and microfluidic I/O interconnects

Calvin King; Deepak C. Sekar; Muhannad S. Bakir; Bing Dang; Joel Pikarsky; James D. Meindl

Motivations for three-dimensional (3D) integration include reduction in system size, interconnect delay, power dissipation and enabling hyper-integration of chips fabricated using disparate process technologies. Although various low-power commercial products exploit the advantages of improved performance and increased device packing density realized by 3D stacking of chips (using wirebonds), such technologies are not suitable for high-performance chips due to ineffective power delivery and heat removal. This is important because high performance chips are projected to dissipate more than 100 W/cm2 and require more than 100 A of supply current. Consequently, when such chips are stacked, the challenges in power delivery and cooling become greatly exacerbated. Thus, revolutionary interconnection and packaging technologies will be needed to address these limits [Bakir, et. al., (2007)]. This paper reports, for the first time, the configuration, fabrication, and experimental results of a 3D integration platform that can support the power delivery, signaling, and heat removal requirements for high-performance chips. The key behind this 3D platform is the ability to process integrate, at the wafer-level, electrical and microfluidic interconnection networks on the wafer containing the electrical circuitry and assemble such chips using conventional flip-chip technology.


electronic components and technology conference | 2007

3D Chip Stacking Technology with Low-Volume Lead-Free Interconnections

Katsuyuki Sakuma; Paul S. Andry; Bing Dang; J. Maria; Cornelia K. Tsang; Chirag S. Patel; Steven L. Wright; B.C. Webb; Edmund J. Sprogis; Sung Kwon Kang; Robert J. Polastre; Raymond Robert Horton; John U. Knickerbocker

In this paper a three-dimensional (3D) chip stacking technology using fine-pitched interconnects with lead-free solder is described. Different interconnect metallurgies such as Cu/Ni/In, Cu/In and Cu/Sn were considered and the bonding conditions to optimize the bonding parameters were determined. The effect of intermetallic compound (IMC) formation on the mechanical properties of the joins is discussed. Unlike standard 100-micron C4 solder balls, very small solder volumes (< 6 microns high) were investigated. The mechanical properties were evaluated by shear and impact shock testing, while scanning electron microscopy (SEM) and optical microscopy were used to study the morphology of the IMC layers in solder joins before and after annealing. It was found that Cu/Ni/In and Cu/In interconnections have slightly lower shear strength per bump. While these values were lower than the Cu/Sn joins, the Cu/Ni/In chips passed the impact shock test for a simulated heat sink mass of 27 g/cm2. The reasons for the differences in reliability of these metallurgies are discussed. 3D chip stacking using two-layers of chips with fine-pitch lead-free interconnects was demonstrated. The resistance of link chains comprising through-vias, lead-free interconnects and Cu links were measured using a 4-point probing method. The average resistance of the through-via including the lead-free interconnect was 21 mOmega.


Ibm Journal of Research and Development | 2008

3D chip stacking with C4 technology

Bing Dang; Steven L. Wright; Paul S. Andry; Edmund J. Sprogis; Cornelia K. Tsang; Mario J. Interrante; B.C. Webb; Robert J. Polastre; Raymond Robert Horton; Chirag S. Patel; A. Sharma; J. Zheng; Katsuyuki Sakuma; John U. Knickerbocker

Three-dimensional (3D) integration technology promises to continue enhancing integrated-circuit system performance with high bandwidth, low latency, low power, and a small form factor for a variety of applications. In this work, conventional C4 (controlled-collapse chip connection) technology is studied for robust interconnection between stacked thin chips. Various solder hierarchies to enable 3D chip stacking and packaging are investigated. Examples are presented to compare stacking schemes with sequential and parallel reflow. Chips as thin as 90 µm are stacked using conventional chip-placement and reflow processes, and the associated process challenges are investigated and discussed. Warpage of the thin chips is measured on various substrates. Rework of the chip stack has also been demonstrated through a temporary chip attachment operation, and the scalability of reworkable C4 is investigated.

Collaboration


Dive into the Bing Dang's collaboration.

Researchain Logo
Decentralizing Knowledge