Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Birgit Schilling is active.

Publication


Featured researches published by Birgit Schilling.


Nature Biotechnology | 2009

Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma.

Terri Addona; Susan E. Abbatiello; Birgit Schilling; Steven J. Skates; D. R. Mani; David M. Bunk; Clifford H. Spiegelman; Lisa J. Zimmerman; Amy-Joan L. Ham; Hasmik Keshishian; Steven C. Hall; Simon Allen; Ronald K. Blackman; Christoph H. Borchers; Charles Buck; Michael P. Cusack; Nathan G. Dodder; Bradford W. Gibson; Jason M. Held; Tara Hiltke; Angela M. Jackson; Eric B. Johansen; Christopher R. Kinsinger; Jing Li; Mehdi Mesri; Thomas A. Neubert; Richard K. Niles; Trenton Pulsipher; David F. Ransohoff; Henry Rodriguez

Verification of candidate biomarkers relies upon specific, quantitative assays optimized for selective detection of target proteins, and is increasingly viewed as a critical step in the discovery pipeline that bridges unbiased biomarker discovery to preclinical validation. Although individual laboratories have demonstrated that multiple reaction monitoring (MRM) coupled with isotope dilution mass spectrometry can quantify candidate protein biomarkers in plasma, reproducibility and transferability of these assays between laboratories have not been demonstrated. We describe a multilaboratory study to assess reproducibility, recovery, linear dynamic range and limits of detection and quantification of multiplexed, MRM-based assays, conducted by NCI-CPTAC. Using common materials and standardized protocols, we demonstrate that these assays can be highly reproducible within and across laboratories and instrument platforms, and are sensitive to low μg/ml protein concentrations in unfractionated plasma. We provide data and benchmarks against which individual laboratories can compare their performance and evaluate new technologies for biomarker verification in plasma.


Journal of Proteome Research | 2010

Repeatability and Reproducibility in Proteomic Identifications by Liquid Chromatography−Tandem Mass Spectrometry

David L. Tabb; Lorenzo Vega-Montoto; Paul A. Rudnick; Asokan Mulayath Variyath; Amy-Joan L. Ham; David M. Bunk; Lisa E. Kilpatrick; Dean Billheimer; Ronald K. Blackman; Steven A. Carr; Karl R. Clauser; Jacob D. Jaffe; Kevin A. Kowalski; Thomas A. Neubert; Fred E. Regnier; Birgit Schilling; Tony Tegeler; Mu Wang; Pei Wang; Jeffrey R. Whiteaker; Lisa J. Zimmerman; Susan J. Fisher; Bradford W. Gibson; Christopher R. Kinsinger; Mehdi Mesri; Henry Rodriguez; Stephen E. Stein; Paul Tempst; Amanda G. Paulovich; Daniel C. Liebler

The complexity of proteomic instrumentation for LC-MS/MS introduces many possible sources of variability. Data-dependent sampling of peptides constitutes a stochastic element at the heart of discovery proteomics. Although this variation impacts the identification of peptides, proteomic identifications are far from completely random. In this study, we analyzed interlaboratory data sets from the NCI Clinical Proteomic Technology Assessment for Cancer to examine repeatability and reproducibility in peptide and protein identifications. Included data spanned 144 LC-MS/MS experiments on four Thermo LTQ and four Orbitrap instruments. Samples included yeast lysate, the NCI-20 defined dynamic range protein mix, and the Sigma UPS 1 defined equimolar protein mix. Some of our findings reinforced conventional wisdom, such as repeatability and reproducibility being higher for proteins than for peptides. Most lessons from the data, however, were more subtle. Orbitraps proved capable of higher repeatability and reproducibility, but aberrant performance occasionally erased these gains. Even the simplest protein digestions yielded more peptide ions than LC-MS/MS could identify during a single experiment. We observed that peptide lists from pairs of technical replicates overlapped by 35-60%, giving a range for peptide-level repeatability in these experiments. Sample complexity did not appear to affect peptide identification repeatability, even as numbers of identified spectra changed by an order of magnitude. Statistical analysis of protein spectral counts revealed greater stability across technical replicates for Orbitraps, making them superior to LTQ instruments for biomarker candidate discovery. The most repeatable peptides were those corresponding to conventional tryptic cleavage sites, those that produced intense MS signals, and those that resulted from proteins generating many distinct peptides. Reproducibility among different instruments of the same type lagged behind repeatability of technical replicates on a single instrument by several percent. These findings reinforce the importance of evaluating repeatability as a fundamental characteristic of analytical technologies.


Molecular & Cellular Proteomics | 2012

Platform-independent and Label-free Quantitation of Proteomic Data Using MS1 Extracted Ion Chromatograms in Skyline APPLICATION TO PROTEIN ACETYLATION AND PHOSPHORYLATION

Birgit Schilling; Matthew J. Rardin; Brendan MacLean; Anna M. Zawadzka; Barbara Frewen; Michael P. Cusack; Dylan J. Sorensen; Michael S. Bereman; Enxuan Jing; Christine C. Wu; Eric Verdin; C. Ronald Kahn; Michael J. MacCoss; Bradford W. Gibson

Despite advances in metabolic and postmetabolic labeling methods for quantitative proteomics, there remains a need for improved label-free approaches. This need is particularly pressing for workflows that incorporate affinity enrichment at the peptide level, where isobaric chemical labels such as isobaric tags for relative and absolute quantitation and tandem mass tags may prove problematic or where stable isotope labeling with amino acids in cell culture labeling cannot be readily applied. Skyline is a freely available, open source software tool for quantitative data processing and proteomic analysis. We expanded the capabilities of Skyline to process ion intensity chromatograms of peptide analytes from full scan mass spectral data (MS1) acquired during HPLC MS/MS proteomic experiments. Moreover, unlike existing programs, Skyline MS1 filtering can be used with mass spectrometers from four major vendors, which allows results to be compared directly across laboratories. The new quantitative and graphical tools now available in Skyline specifically support interrogation of multiple acquisitions for MS1 filtering, including visual inspection of peak picking and both automated and manual integration, key features often lacking in existing software. In addition, Skyline MS1 filtering displays retention time indicators from underlying MS/MS data contained within the spectral library to ensure proper peak selection. The modular structure of Skyline also provides well defined, customizable data reports and thus allows users to directly connect to existing statistical programs for post hoc data analysis. To demonstrate the utility of the MS1 filtering approach, we have carried out experiments on several MS platforms and have specifically examined the performance of this method to quantify two important post-translational modifications: acetylation and phosphorylation, in peptide-centric affinity workflows of increasing complexity using mouse and human models.


Journal of Proteome Research | 2009

IDPicker 2.0: Improved protein assembly with high discrimination peptide identification filtering.

Ze Qiang Ma; Surendra Dasari; Matthew C. Chambers; Michael D. Litton; Scott M. Sobecki; Lisa J. Zimmerman; Patrick J. Halvey; Birgit Schilling; Penelope M. Drake; Bradford W. Gibson; David L. Tabb

Tandem mass spectrometry-based shotgun proteomics has become a widespread technology for analyzing complex protein mixtures. A number of database searching algorithms have been developed to assign peptide sequences to tandem mass spectra. Assembling the peptide identifications to proteins, however, is a challenging issue because many peptides are shared among multiple proteins. IDPicker is an open-source protein assembly tool that derives a minimum protein list from peptide identifications filtered to a specified False Discovery Rate. Here, we update IDPicker to increase confident peptide identifications by combining multiple scores produced by database search tools. By segregating peptide identifications for thresholding using both the precursor charge state and the number of tryptic termini, IDPicker retrieves more peptides for protein assembly. The new version is more robust against false positive proteins, especially in searches using multispecies databases, by requiring additional novel peptides in the parsimony process. IDPicker has been designed for incorporation in many identification workflows by the addition of a graphical user interface and the ability to read identifications from the pepXML format. These advances position IDPicker for high peptide discrimination and reliable protein assembly in large-scale proteomics studies. The source code and binaries for the latest version of IDPicker are available from http://fenchurch.mc.vanderbilt.edu/ .


Proceedings of the National Academy of Sciences of the United States of America | 2013

Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways

Matthew J. Rardin; John C. Newman; Jason M. Held; Michael P. Cusack; Dylan J. Sorensen; Biao Li; Birgit Schilling; Sean D. Mooney; C. Ronald Kahn; Eric Verdin; Bradford W. Gibson

Large-scale proteomic approaches have identified numerous mitochondrial acetylated proteins; however in most cases, their regulation by acetyltransferases and deacetylases remains unclear. Sirtuin 3 (SIRT3) is an NAD+-dependent mitochondrial protein deacetylase that has been shown to regulate a limited number of enzymes in key metabolic pathways. Here, we use a rigorous label-free quantitative MS approach (called MS1 Filtering) to analyze changes in lysine acetylation from mouse liver mitochondria in the absence of SIRT3. Among 483 proteins, a total of 2,187 unique sites of lysine acetylation were identified after affinity enrichment. MS1 Filtering revealed that lysine acetylation of 283 sites in 136 proteins was significantly increased in the absence of SIRT3 (at least twofold). A subset of these sites was independently validated using selected reaction monitoring MS. These data show that SIRT3 regulates acetylation on multiple proteins, often at multiple sites, across several metabolic pathways including fatty acid oxidation, ketogenesis, amino acid catabolism, and the urea and tricarboxylic acid cycles, as well as mitochondrial regulatory proteins. The widespread modification of key metabolic pathways greatly expands the number of known substrates and sites that are targeted by SIRT3 and establishes SIRT3 as a global regulator of mitochondrial protein acetylation with the capability of coordinating cellular responses to nutrient status and energy homeostasis.


Nature Biotechnology | 2003

Phosphospecific proteolysis for mapping sites of protein phosphorylation

Zachary A. Knight; Birgit Schilling; Richard H. Row; Denise M. Kenski; Bradford W. Gibson; Kevan M. Shokat

Protein phosphorylation is a dominant mechanism of information transfer in cells, and a major goal of current proteomic efforts is to generate a system-level map describing all the sites of protein phosphorylation. Recent efforts have focused on developing technologies for enriching and quantifying phosphopeptides. Identification of the sites of phosphorylation typically relies on tandem mass spectrometry to sequence individual peptides. Here we describe an approach for phosphopeptide mapping that makes it possible to interrogate a protein sequence directly with a protease that recognizes sites of phosphorylation. The key to this approach is the selective chemical transformation of phosphoserine and phosphothreonine residues into lysine analogs (aminoethylcysteine and β-methylaminoethylcysteine, respectively). Aminoethylcysteine-modified peptides are then cleaved with a lysine-specific protease to map sites of phosphorylation. A blocking step enables single-site cleavage, and adaptation of this reaction to the solid phase facilitates phosphopeptide enrichment and modification in one step.


Journal of the American Society for Mass Spectrometry | 2003

MS2Assign, automated assignment and nomenclature of tandem mass spectra of chemically crosslinked peptides

Birgit Schilling; Richard H. Row; Bradford W. Gibson; Xin Guo; Malin M. Young

In a previous report (Young et al., Proc. Natl. Acad. Sci. U.S.A.2000,97, 5802–5806), we provided a proof-of-principle for fold recognition of proteins using a homobifunctional amine-specific chemical crosslinking reagent in combination with mass spectrometry analysis and homology modeling. In this current work, we propose a systematic nomenclature to describe the types of peptides that are generated after proteolysis of crosslinked proteins, their fragmentation by tandem mass spectrometry, and an automated algorithm for MS/MS spectral assignment called “MS2Assign.” Several examples are provided from crosslinked peptides and proteins including HIV-integrase, cytochrome c, ribonuclease A, myoglobin, cytidine 5-monophosphate N-acetylneuraminic acid synthetase, and the peptide thymopentin. Tandem mass spectra were obtained from various crosslinked peptides using post source decay MALDI-TOF and collision induced dissociation on a quadrupole-TOF instrument, along with their automated interpretation using MS2Assign. A variety of possible outcomes are described and categorized according to the number of modified lysines and/or peptide chains involved, as well as the presence of singly modified (dead-end) lysine residues. In addition, the proteolysis and chromatographic conditions necessary for optimized crosslinked peptide recovery are presented.


PLOS ONE | 2007

Mitochondrial oxidative stress causes hyperphosphorylation of tau.

Simon Melov; Paul A. Adlard; Karl Morten; Felicity Johnson; Tamara R. Golden; Doug Hinerfeld; Birgit Schilling; Christine Mavros; Colin L. Masters; Irene Volitakis; Qiao-Xin Li; Katrina M. Laughton; Alan Hubbard; Robert A. Cherny; Brad Gibson; Ashley I. Bush

Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimers disease (AD): tau phosphorylation, and ß-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2) die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau) in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576) with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Aß load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Cathepsin L in secretory vesicles functions as a prohormone-processing enzyme for production of the enkephalin peptide neurotransmitter.

Sukkid Yasothornsrikul; Doron C. Greenbaum; Katalin F. Medzihradszky; Thomas Toneff; Richard A. Bundey; Ruthellen Miller; Birgit Schilling; Ivonne Petermann; Jessica Dehnert; Anna Logvinova; Paul Goldsmith; John M. Neveu; William S. Lane; Bradford W. Gibson; Thomas Reinheckel; Christoph Peters; Matthew Bogyo; Vivian Hook

Multistep proteolytic mechanisms are essential for converting proprotein precursors into active peptide neurotransmitters and hormones. Cysteine proteases have been implicated in the processing of proenkephalin and other neuropeptide precursors. Although the papain family of cysteine proteases has been considered the primary proteases of the lysosomal degradation pathway, more recent studies indicate that functions of these enzymes are linked to specific biological processes. However, few protein substrates have been described for members of this family. We show here that secretory vesicle cathepsin L is the responsible cysteine protease of chromaffin granules for converting proenkephalin to the active enkephalin peptide neurotransmitter. The cysteine protease activity was identified as cathepsin L by affinity labeling with an activity-based probe for cysteine proteases followed by mass spectrometry for peptide sequencing. Production of [Met]enkephalin by cathepsin L occurred by proteolytic processing at dibasic and monobasic prohormone-processing sites. Cellular studies showed the colocalization of cathepsin L with [Met]enkephalin in secretory vesicles of neuroendocrine chromaffin cells by immunofluorescent confocal and immunoelectron microscopy. Functional localization of cathepsin L to the regulated secretory pathway was demonstrated by its cosecretion with [Met]enkephalin. Finally, in cathepsin L gene knockout mice, [Met]enkephalin levels in brain were reduced significantly; this occurred with an increase in the relative amounts of enkephalin precursor. These findings indicate a previously uncharacterized biological role for secretory vesicle cathepsin L in the production of [Met]enkephalin, an endogenous peptide neurotransmitter.


Journal of Biological Chemistry | 2004

Molecular components of a cell death pathway activated by endoplasmic reticulum stress

Rammohan V. Rao; Karen S. Poksay; Susana Castro-Obregon; Birgit Schilling; Richard H. Row; Gabriel del Rio; Bradford W. Gibson; H. Michael Ellerby; Dale E. Bredesen

Alterations in Ca2+ homeostasis and accumulation of misfolded proteins in the endoplasmic reticulum (ER) cause ER stress that ultimately leads to programmed cell death. Recent studies have shown that ER stress triggers programmed cell death via an alternative intrinsic pathway of apoptosis that, unlike the intrinsic pathway described previously, is independent of Apaf-1 and cytochrome c. In the present work, we have used a set of complementary approaches, including two-dimensional gel electrophoresis coupled with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and nano-liquid chromatography-electrospray ionization mass spectrometry with tandem mass spectrometry, RNA interference, co-immunoprecipitation, immunodepletion of candidate proteins, and reconstitution studies, to identify mediators of the ER stress-induced cell death pathway. Our data identify two molecules, valosin-containing protein and apoptosis-linked gene-2 (ALG-2), that appear to play a role in mediating ER stress-induced cell death.

Collaboration


Dive into the Birgit Schilling's collaboration.

Top Co-Authors

Avatar

Bradford W. Gibson

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Jason M. Held

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Michael P. Cusack

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dylan J. Sorensen

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Christopher C. Benz

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard H. Row

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Simon Allen

University of California

View shared research outputs
Top Co-Authors

Avatar

Steven C. Hall

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge