Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon Allen is active.

Publication


Featured researches published by Simon Allen.


Nature Biotechnology | 2009

Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma.

Terri Addona; Susan E. Abbatiello; Birgit Schilling; Steven J. Skates; D. R. Mani; David M. Bunk; Clifford H. Spiegelman; Lisa J. Zimmerman; Amy-Joan L. Ham; Hasmik Keshishian; Steven C. Hall; Simon Allen; Ronald K. Blackman; Christoph H. Borchers; Charles Buck; Michael P. Cusack; Nathan G. Dodder; Bradford W. Gibson; Jason M. Held; Tara Hiltke; Angela M. Jackson; Eric B. Johansen; Christopher R. Kinsinger; Jing Li; Mehdi Mesri; Thomas A. Neubert; Richard K. Niles; Trenton Pulsipher; David F. Ransohoff; Henry Rodriguez

Verification of candidate biomarkers relies upon specific, quantitative assays optimized for selective detection of target proteins, and is increasingly viewed as a critical step in the discovery pipeline that bridges unbiased biomarker discovery to preclinical validation. Although individual laboratories have demonstrated that multiple reaction monitoring (MRM) coupled with isotope dilution mass spectrometry can quantify candidate protein biomarkers in plasma, reproducibility and transferability of these assays between laboratories have not been demonstrated. We describe a multilaboratory study to assess reproducibility, recovery, linear dynamic range and limits of detection and quantification of multiplexed, MRM-based assays, conducted by NCI-CPTAC. Using common materials and standardized protocols, we demonstrate that these assays can be highly reproducible within and across laboratories and instrument platforms, and are sensitive to low μg/ml protein concentrations in unfractionated plasma. We provide data and benchmarks against which individual laboratories can compare their performance and evaluate new technologies for biomarker verification in plasma.


Molecular & Cellular Proteomics | 2015

Large-Scale Interlaboratory Study to Develop, Analytically Validate and Apply Highly Multiplexed, Quantitative Peptide Assays to Measure Cancer-Relevant Proteins in Plasma

Susan E. Abbatiello; Birgit Schilling; D. R. Mani; Lisa J. Zimmerman; Steven C. Hall; Brendan MacLean; Matthew E. Albertolle; Simon Allen; Michael Burgess; Michael P. Cusack; Mousumi Gosh; Victoria Hedrick; Jason M. Held; H. Dorota Inerowicz; Angela M. Jackson; Hasmik Keshishian; Christopher R. Kinsinger; John S. Lyssand; Lee Makowski; Mehdi Mesri; Henry Rodriguez; Paul A. Rudnick; Pawel Sadowski; Nell Sedransk; Kent Shaddox; Stephen J. Skates; Eric Kuhn; Derek Smith; Jeffery R. Whiteaker; Corbin A. Whitwell

There is an increasing need in biology and clinical medicine to robustly and reliably measure tens to hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility, and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here, we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and seven control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data, we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to subnanogram/ml sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and interlaboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy-isotope-labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an interlaboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality control measures, enables sensitive, specific, reproducible, and quantitative measurements of proteins and peptides in complex biological matrices such as plasma.


Journal of Biological Chemistry | 2003

Ether Phospholipids and Glycosylinositolphospholipids Are Not Required for Amastigote Virulence or for Inhibition of Macrophage Activation by Leishmania major

Rachel Zufferey; Simon Allen; Tamara Barron; Deborah R. Sullivan; Paul W. Denny; Igor C. Almeida; Deborah Smith; Salvatore J. Turco; Michael A. J. Ferguson; Stephen M. Beverley

Ether phospholipids are major components of the membranes of humans and Leishmania. In protozoan parasites they occur separately or as part of the glycosylphosphatidylinositol (GPI) anchor of molecules implicated in virulence, such as lipophosphoglycan (LPG), smaller glycosylinositolphospholipids (GIPLs), and GPI-anchored proteins. We generated null mutants of the Leishmania major alkyldihydroxyacetonephosphate synthase (ADS), the first committed step of ether lipid synthesis. Enzymatic analysis and comprehensive mass spectrometric analysis showed that ads1- knock-outs lacked all ether phospholipids, including plasmalogens, LPG, and GIPLs. Leishmania ads1- thus represents the first ether lipid-synthesizing eukaryote for which a completely null mutant could be obtained. Remarkably ads1- grew well and maintained lipid rafts (detergent-resistant membranes). In virulence tests it closely resembled LPG-deficient L. major, including sensitivity to complement and an inability to survive the initial phase of macrophage infection. Likewise it retained the ability to inhibit host cell signaling and to form infectious amastigotes from the few parasites surviving the establishment defect. These findings counter current proposals that GIPLs are required for amastigote survival in the mammalian host or that parasite lyso-alkyl or alkylacyl-GPI anchors are solely responsible for inhibition of macrophage activation.


Molecular & Cellular Proteomics | 2013

Design, Implementation and Multisite Evaluation of a System Suitability Protocol for the Quantitative Assessment of Instrument Performance in Liquid Chromatography-Multiple Reaction Monitoring-MS (LC-MRM-MS)

Susan E. Abbatiello; D. R. Mani; Birgit Schilling; Brendan MacLean; Lisa J. Zimmerman; Xingdong Feng; Michael P. Cusack; Nell Sedransk; Steven C. Hall; Terri Addona; Simon Allen; Nathan G. Dodder; Mousumi Ghosh; Jason M. Held; Victoria Hedrick; H. Dorota Inerowicz; Angela M. Jackson; Hasmik Keshishian; Jong Won Kim; John S. Lyssand; C. Paige Riley; Paul A. Rudnick; Pawel Sadowski; Kent Shaddox; Derek Smith; Daniela M. Tomazela; Åsa Wahlander; Sofia Waldemarson; Corbin A. Whitwell; Jinsam You

Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities.


Infection and Immunity | 2005

Novel Sialic Acid Transporter of Haemophilus influenzae

Simon Allen; Anthony Zaleski; Jason W. Johnston; Bradford W. Gibson; Michael A. Apicella

ABSTRACT Nontypeable Haemophilus influenzae is an opportunistic pathogen and a common cause of otitis media in children and of chronic bronchitis and pneumonia in patients with chronic obstructive pulmonary disease. The lipooligosaccharides, a major component of the outer membrane of H. influenzae, play an important role in microbial virulence and pathogenicity. N-Acetylneuraminic acid (sialic acid) can be incorporated into the lipooligosaccharides as a terminal nonreducing sugar. Although much of the pathway of sialic acid incorporation into lipooligosaccharides is understood, the transporter responsible for N-acetylneuraminic acid uptake in H. influenzae has yet to be characterized. In this paper we demonstrate that this transporter is a novel sugar transporter of the tripartite ATP-independent periplasmic transporter family. In the absence of this transporter, H. influenzae cannot incorporate sialic acid into its lipooligosaccharides, making the organism unable to survive when exposed to human serum and causing reduced viability in biofilm growth.


Environmental Microbiology | 2014

Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains

Jonathan Remis; Dongguang Wei; Amita Gorur; Marcin Zemla; Jessica Haraga; Simon Allen; H. Ewa Witkowska; J. William Costerton; James E. Berleman; Manfred Auer

The social soil bacterium, Myxococcus xanthus, displays a variety of complex and highly coordinated behaviours, including social motility, predatory rippling and fruiting body formation. Here we show that M. xanthus cells produce a network of outer membrane extensions in the form of outer membrane vesicle chains and membrane tubes that interconnect cells. We observed peritrichous display of vesicles and vesicle chains, and increased abundance in biofilms compared with planktonic cultures. By applying a range of imaging techniques, including three-dimensional (3D) focused ion beam scanning electron microscopy, we determined these structures to range between 30 and 60 nm in width and up to 5 μm in length. Purified vesicle chains consist of typical M. xanthus lipids, fucose, mannose, N-acetylglucosamine and N-acetylgalactoseamine carbohydrates and a small set of cargo protein. The protein content includes CglB and Tgl outer membrane proteins known to be transferable between cells in a contact-dependent manner. Most significantly, the 3D organization of cells within biofilms indicates that cells are connected via an extensive network of membrane extensions that may connect cells at the level of the periplasmic space. Such a network would allow the transfer of membrane proteins and other molecules between cells, and therefore could provide a mechanism for the coordination of social activities.


Analytical Biochemistry | 2011

A lectin affinity workflow targeting glycosite-specific, cancer-related carbohydrate structures in trypsin-digested human plasma

Penelope M. Drake; Birgit Schilling; Richard K. Niles; Miles Braten; Eric B. Johansen; Haichuan Liu; Michael T. Lerch; Dylan J. Sorensen; Bensheng Li; Simon Allen; Steven C. Hall; H. Ewa Witkowska; Fred E. Regnier; Bradford W. Gibson; Susan J. Fisher

Glycans are cell-type-specific, posttranslational protein modifications that are modulated during developmental and disease processes. As such, glycoproteins are attractive biomarker candidates. Here, we describe a mass spectrometry-based workflow that incorporates lectin affinity chromatography to enrich for proteins that carry specific glycan structures. As increases in sialylation and fucosylation are prominent among cancer-associated modifications, we focused on Sambucus nigra agglutinin (SNA) and Aleuria aurantia lectin (AAL), lectins which bind sialic acid- and fucose-containing structures, respectively. Fucosylated and sialylated glycopeptides from human lactoferrin served as positive controls, and high-mannose structures from yeast invertase served as negative controls. The standards were spiked into Multiple Affinity Removal System (MARS) 14-depleted, trypsin-digested human plasma from healthy donors. Samples were loaded onto lectin columns, separated by HPLC into flow-through and bound fractions, and treated with peptide: N-glycosidase F to remove N-linked glycans. The deglycosylated peptide fractions were interrogated by ESI HPLC-MS/MS. We identified a total of 122 human plasma glycoproteins containing 247 unique glycosites. Importantly, several of the observed glycoproteins (e.g., cadherin 5 and neutrophil gelatinase-associated lipocalin) typically circulate in plasma at low nanogram per milliliter levels. Together, these results provide mass spectrometry-based evidence of the utility of incorporating lectin-separation platforms into cancer biomarker discovery pipelines.


Journal of Biological Chemistry | 2008

Characterization of the N-acetyl-5-neuraminic acid binding site of the extracytoplasmic solute receptor (SiaP) of nontypeable Haemophilus influenzae strain 2019

Jason W. Johnston; Nathan P. Coussens; Simon Allen; Jon C. D. Houtman; Keith H. Turner; Anthony Zaleski; S. Ramaswamy; Bradford W. Gibson; Michael A. Apicella

Nontypeable Haemophilus influenzae is an opportunistic human pathogen causing otitis media in children and chronic bronchitis and pneumonia in patients with chronic obstructive pulmonary disease. The outer membrane of nontypeable H. influenzae is dominated by lipooligosaccharides (LOS), many of which incorporate sialic acid as a terminal nonreducing sugar. Sialic acid has been demonstrated to be an important factor in the survival of the bacteria within the host environment. H. influenzae is incapable of synthesizing sialic acid and is dependent on scavenging free sialic acid from the host environment. To achieve this, H. influenzae utilizes a tripartite ATP-independent periplasmic transporter. In this study, we characterize the binding site of the extracytoplasmic solute receptor (SiaP) from nontypeable H. influenzae strain 2019. A crystal structure of N-acetyl-5-neuraminic acid (Neu5Ac)-bound SiaP was determined to 1.4Å resolution. Thermodynamic characterization of Neu5Ac binding shows this interaction is enthalpically driven with a substantial unfavorable contribution from entropy. This is expected because the binding of SiaP to Neu5Ac is mediated by numerous hydrogen bonds and has several buried water molecules. Point mutations targeting specific amino acids were introduced in the putative binding site. Complementation with the mutated siaP constructs resulted either in full, partial, or no complementation, depending on the role of specific residues. Mass spectrometry analysis of the O-deacylated LOS of the R127K point mutation confirmed the observation of reduced incorporation of Neu5Ac into the LOS. The decreased ability of H. influenzae to import sialic acid had negative effects on resistance to complement-mediated killing and viability of biofilms in vitro, confirming the importance of sialic acid transport to the bacterium.


Molecular Microbiology | 2007

Regulation of sialic acid transport and catabolism in Haemophilus influenzae

Jason W. Johnston; Anthony Zaleski; Simon Allen; Joe M. Mootz; David Armbruster; Bradford W. Gibson; Michael A. Apicella; Robert S. Munson

Virulence of nontypeable Haemophilus influenzae (NTHi) is dependent on the decoration of lipooligosaccharide with sialic acid. This sugar must be derived from the host, as NTHi cannot synthesize sialic acids. NTHi can also use sialic acid as a carbon source. The genes encoding the sialic acid transporter and the genes encoding the catabolic activities are localized to two divergently transcribed operons, the siaPT operon and the nan operon respectively. In this study, we identified SiaR as a repressor of sialic acid transport and catabolism in NTHi. Inactivation of siaR resulted in the unregulated expression of the genes in both operons. Unregulated catabolism of sialic acid in the siaR mutant resulted in the reduction of surface sialylation and an increase in serum sensitivity. In addition to SiaR‐mediated repression, CRP, the cAMP receptor protein, was shown to activate expression of the siaPT operon but not the nan operon. We describe a model in which SiaR and CRP work to modulate intracellular sialic acid levels. Our results demonstrate the importance of SiaR‐mediated regulation to balance the requirement of surface sialylation and the toxic accumulation of intracellular sialic acid.


Infection and Immunity | 2003

Identification of a 3-Deoxy-d-manno-Octulosonic Acid Biosynthetic Operon in Moraxella catarrhalis and Analysis of a KdsA-Deficient Isogenic Mutant

Nicole R. Luke; Simon Allen; Bradford W. Gibson; Anthony A. Campagnari

ABSTRACT Lipooligosaccharide (LOS), a predominant surface-exposed component of the outer membrane, has been implicated as a virulence factor in the pathogenesis of Moraxella catarrhalis infections. However, the critical steps involved in the biosynthesis and assembly of M. catarrhalis LOS currently remain undefined. In this study, we used random transposon mutagenesis to identify a 3-deoxy-d-manno-octulosonic acid (KDO) biosynthetic operon in M. catarrhalis with the gene order pyrG-kdsA-eno. The lipid A-KDO molecule serves as the acceptor onto which a variety of glycosyl transferases sequentially add the core and branch oligosaccharide extensions for the LOS molecule. KdsA, the KDO-8-phosphate synthase, catalyzes the first step of KDO biosynthesis and is an essential enzyme in gram-negative enteric bacteria for maintenance of bacterial viability. We report the construction of an isogenic M. catarrhalis kdsA mutant in strain 7169 by allelic exchange. Our data indicate that an LOS molecule consisting only of lipid A and lacking KDO glycosylation is sufficient to sustain M. catarrhalis survival in vitro. In addition, comparative growth and susceptibility assays were performed to assess the sensitivity of 7169kdsA11 compared to that of the parental strain. The results of these studies demonstrate that the native LOS molecule is an important factor in maintaining the integrity of the outer membrane and suggest that LOS is a critical component involved in the ability of M. catarrhalis to resist the bactericidal activity of human sera.

Collaboration


Dive into the Simon Allen's collaboration.

Top Co-Authors

Avatar

Steven C. Hall

University of California

View shared research outputs
Top Co-Authors

Avatar

Bradford W. Gibson

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Birgit Schilling

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason M. Held

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Michael P. Cusack

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

D. R. Mani

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge