Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa J. Zimmerman is active.

Publication


Featured researches published by Lisa J. Zimmerman.


Nature Biotechnology | 2009

Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma.

Terri Addona; Susan E. Abbatiello; Birgit Schilling; Steven J. Skates; D. R. Mani; David M. Bunk; Clifford H. Spiegelman; Lisa J. Zimmerman; Amy-Joan L. Ham; Hasmik Keshishian; Steven C. Hall; Simon Allen; Ronald K. Blackman; Christoph H. Borchers; Charles Buck; Michael P. Cusack; Nathan G. Dodder; Bradford W. Gibson; Jason M. Held; Tara Hiltke; Angela M. Jackson; Eric B. Johansen; Christopher R. Kinsinger; Jing Li; Mehdi Mesri; Thomas A. Neubert; Richard K. Niles; Trenton Pulsipher; David F. Ransohoff; Henry Rodriguez

Verification of candidate biomarkers relies upon specific, quantitative assays optimized for selective detection of target proteins, and is increasingly viewed as a critical step in the discovery pipeline that bridges unbiased biomarker discovery to preclinical validation. Although individual laboratories have demonstrated that multiple reaction monitoring (MRM) coupled with isotope dilution mass spectrometry can quantify candidate protein biomarkers in plasma, reproducibility and transferability of these assays between laboratories have not been demonstrated. We describe a multilaboratory study to assess reproducibility, recovery, linear dynamic range and limits of detection and quantification of multiplexed, MRM-based assays, conducted by NCI-CPTAC. Using common materials and standardized protocols, we demonstrate that these assays can be highly reproducible within and across laboratories and instrument platforms, and are sensitive to low μg/ml protein concentrations in unfractionated plasma. We provide data and benchmarks against which individual laboratories can compare their performance and evaluate new technologies for biomarker verification in plasma.


Cell Metabolism | 2012

Glucose-Independent Glutamine Metabolism via TCA Cycling for Proliferation and Survival in B Cells

Anne Le; Andrew N. Lane; Max Hamaker; Sminu Bose; Arvin M. Gouw; Joseph Barbi; Takashi Tsukamoto; Camilio J. Rojas; Barbara S. Slusher; Haixia Zhang; Lisa J. Zimmerman; Daniel C. Liebler; Robbert J. C. Slebos; Pawel Lorkiewicz; Richard M. Higashi; Teresa W.-M. Fan; Chi V. Dang

Because MYC plays a causal role in many human cancers, including those with hypoxic and nutrient-poor tumor microenvironments, we have determined the metabolic responses of a MYC-inducible human Burkitt lymphoma model P493 cell line to aerobic and hypoxic conditions, and to glucose deprivation, using stable isotope-resolved metabolomics. Using [U-(13)C]-glucose as the tracer, both glucose consumption and lactate production were increased by MYC expression and hypoxia. Using [U-(13)C,(15)N]-glutamine as the tracer, glutamine import and metabolism through the TCA cycle persisted under hypoxia, and glutamine contributed significantly to citrate carbons. Under glucose deprivation, glutamine-derived fumarate, malate, and citrate were significantly increased. Their (13)C-labeling patterns demonstrate an alternative energy-generating glutaminolysis pathway involving a glucose-independent TCA cycle. The essential role of glutamine metabolism in cell survival and proliferation under hypoxia and glucose deficiency makes them susceptible to the glutaminase inhibitor BPTES and hence could be targeted for cancer therapy.


Nature | 2014

Proteogenomic characterization of human colon and rectal cancer

Bing Zhang; Jing Wang; Xiaojing Wang; Jing Zhu; Qi Liu; Zhiao Shi; Matthew C. Chambers; Lisa J. Zimmerman; Kent Shaddox; Sangtae Kim; Sherri R. Davies; Sean Wang; Pei Wang; Christopher R. Kinsinger; Robert Rivers; Henry Rodriguez; R. Reid Townsend; Matthew J. Ellis; Steven A. Carr; David L. Tabb; Robert J. Coffey; Robbert J. C. Slebos; Daniel C. Liebler; Michael A. Gillette; Karl R. Klauser; Eric Kuhn; D. R. Mani; Philipp Mertins; Karen A. Ketchum; Amanda G. Paulovich

Extensive genomic characterization of human cancers presents the problem of inference from genomic abnormalities to cancer phenotypes. To address this problem, we analysed proteomes of colon and rectal tumours characterized previously by The Cancer Genome Atlas (TCGA) and perform integrated proteogenomic analyses. Somatic variants displayed reduced protein abundance compared to germline variants. Messenger RNA transcript abundance did not reliably predict protein abundance differences between tumours. Proteomics identified five proteomic subtypes in the TCGA cohort, two of which overlapped with the TCGA ‘microsatellite instability/CpG island methylation phenotype’ transcriptomic subtype, but had distinct mutation, methylation and protein expression patterns associated with different clinical outcomes. Although copy number alterations showed strong cis- and trans-effects on mRNA abundance, relatively few of these extend to the protein level. Thus, proteomics data enabled prioritization of candidate driver genes. The chromosome 20q amplicon was associated with the largest global changes at both mRNA and protein levels; proteomics data highlighted potential 20q candidates, including HNF4A (hepatocyte nuclear factor 4, alpha), TOMM34 (translocase of outer mitochondrial membrane 34) and SRC (SRC proto-oncogene, non-receptor tyrosine kinase). Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords a new paradigm for understanding cancer biology.


Journal of Proteome Research | 2010

Repeatability and Reproducibility in Proteomic Identifications by Liquid Chromatography−Tandem Mass Spectrometry

David L. Tabb; Lorenzo Vega-Montoto; Paul A. Rudnick; Asokan Mulayath Variyath; Amy-Joan L. Ham; David M. Bunk; Lisa E. Kilpatrick; Dean Billheimer; Ronald K. Blackman; Steven A. Carr; Karl R. Clauser; Jacob D. Jaffe; Kevin A. Kowalski; Thomas A. Neubert; Fred E. Regnier; Birgit Schilling; Tony Tegeler; Mu Wang; Pei Wang; Jeffrey R. Whiteaker; Lisa J. Zimmerman; Susan J. Fisher; Bradford W. Gibson; Christopher R. Kinsinger; Mehdi Mesri; Henry Rodriguez; Stephen E. Stein; Paul Tempst; Amanda G. Paulovich; Daniel C. Liebler

The complexity of proteomic instrumentation for LC-MS/MS introduces many possible sources of variability. Data-dependent sampling of peptides constitutes a stochastic element at the heart of discovery proteomics. Although this variation impacts the identification of peptides, proteomic identifications are far from completely random. In this study, we analyzed interlaboratory data sets from the NCI Clinical Proteomic Technology Assessment for Cancer to examine repeatability and reproducibility in peptide and protein identifications. Included data spanned 144 LC-MS/MS experiments on four Thermo LTQ and four Orbitrap instruments. Samples included yeast lysate, the NCI-20 defined dynamic range protein mix, and the Sigma UPS 1 defined equimolar protein mix. Some of our findings reinforced conventional wisdom, such as repeatability and reproducibility being higher for proteins than for peptides. Most lessons from the data, however, were more subtle. Orbitraps proved capable of higher repeatability and reproducibility, but aberrant performance occasionally erased these gains. Even the simplest protein digestions yielded more peptide ions than LC-MS/MS could identify during a single experiment. We observed that peptide lists from pairs of technical replicates overlapped by 35-60%, giving a range for peptide-level repeatability in these experiments. Sample complexity did not appear to affect peptide identification repeatability, even as numbers of identified spectra changed by an order of magnitude. Statistical analysis of protein spectral counts revealed greater stability across technical replicates for Orbitraps, making them superior to LTQ instruments for biomarker candidate discovery. The most repeatable peptides were those corresponding to conventional tryptic cleavage sites, those that produced intense MS signals, and those that resulted from proteins generating many distinct peptides. Reproducibility among different instruments of the same type lagged behind repeatability of technical replicates on a single instrument by several percent. These findings reinforce the importance of evaluating repeatability as a fundamental characteristic of analytical technologies.


Journal of Proteome Research | 2009

IDPicker 2.0: Improved protein assembly with high discrimination peptide identification filtering.

Ze Qiang Ma; Surendra Dasari; Matthew C. Chambers; Michael D. Litton; Scott M. Sobecki; Lisa J. Zimmerman; Patrick J. Halvey; Birgit Schilling; Penelope M. Drake; Bradford W. Gibson; David L. Tabb

Tandem mass spectrometry-based shotgun proteomics has become a widespread technology for analyzing complex protein mixtures. A number of database searching algorithms have been developed to assign peptide sequences to tandem mass spectra. Assembling the peptide identifications to proteins, however, is a challenging issue because many peptides are shared among multiple proteins. IDPicker is an open-source protein assembly tool that derives a minimum protein list from peptide identifications filtered to a specified False Discovery Rate. Here, we update IDPicker to increase confident peptide identifications by combining multiple scores produced by database search tools. By segregating peptide identifications for thresholding using both the precursor charge state and the number of tryptic termini, IDPicker retrieves more peptides for protein assembly. The new version is more robust against false positive proteins, especially in searches using multispecies databases, by requiring additional novel peptides in the parsimony process. IDPicker has been designed for incorporation in many identification workflows by the addition of a graphical user interface and the ability to read identifications from the pepXML format. These advances position IDPicker for high peptide discrimination and reliable protein assembly in large-scale proteomics studies. The source code and binaries for the latest version of IDPicker are available from http://fenchurch.mc.vanderbilt.edu/ .


Biochemistry | 2013

Targeted quantitation of proteins by mass spectrometry.

Daniel C. Liebler; Lisa J. Zimmerman

Quantitative measurement of proteins is one of the most fundamental analytical tasks in a biochemistry laboratory, but widely used immunochemical methods often have limited specificity and high measurement variation. In this review, we discuss applications of multiple-reaction monitoring (MRM) mass spectrometry, which allows sensitive, precise quantitative analyses of peptides and the proteins from which they are derived. Systematic development of MRM assays is permitted by databases of peptide mass spectra and sequences, software tools for analysis design and data analysis, and rapid evolution of tandem mass spectrometer technology. Key advantages of MRM assays are the ability to target specific peptide sequences, including variants and modified forms, and the capacity for multiplexing that allows analysis of dozens to hundreds of peptides. Different quantitative standardization methods provide options that balance precision, sensitivity, and assay cost. Targeted protein quantitation by MRM and related mass spectrometry methods can advance biochemistry by transforming approaches to protein measurement.


Cell | 2016

Integrated proteogenomic characterization of human high-grade serous ovarian cancer

Hui Zhang; Tao Liu; Zhen Zhang; Samuel H. Payne; Bai Zhang; Jason E. McDermott; Jian-Ying Zhou; Vladislav A. Petyuk; Li Chen; Debjit Ray; Shisheng Sun; Feng Yang; Lijun Chen; Jing Wang; Punit Shah; Seong Won Cha; Paul Aiyetan; Sunghee Woo; Yuan Tian; Marina A. Gritsenko; Therese R. Clauss; Caitlin H. Choi; Matthew E. Monroe; Stefani N. Thomas; Song Nie; Chaochao Wu; Ronald J. Moore; Kun-Hsing Yu; David L. Tabb; David Fenyö

To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.


Molecular & Cellular Proteomics | 2010

Performance Metrics for Liquid Chromatography-Tandem Mass Spectrometry Systems in Proteomics Analyses

Paul A. Rudnick; Karl R. Clauser; Lisa E. Kilpatrick; Dmitrii V. Tchekhovskoi; P. Neta; Nikša Blonder; Dean Billheimer; Ronald K. Blackman; David M. Bunk; Amy-Joan L. Ham; Jacob D. Jaffe; Christopher R. Kinsinger; Mehdi Mesri; Thomas A. Neubert; Birgit Schilling; David L. Tabb; Tony Tegeler; Lorenzo Vega-Montoto; Asokan Mulayath Variyath; Mu Wang; Pei Wang; Jeffrey R. Whiteaker; Lisa J. Zimmerman; Steven A. Carr; Susan J. Fisher; Bradford W. Gibson; Amanda G. Paulovich; Fred E. Regnier; Henry Rodriguez; Cliff Spiegelman

A major unmet need in LC-MS/MS-based proteomics analyses is a set of tools for quantitative assessment of system performance and evaluation of technical variability. Here we describe 46 system performance metrics for monitoring chromatographic performance, electrospray source stability, MS1 and MS2 signals, dynamic sampling of ions for MS/MS, and peptide identification. Applied to data sets from replicate LC-MS/MS analyses, these metrics displayed consistent, reasonable responses to controlled perturbations. The metrics typically displayed variations less than 10% and thus can reveal even subtle differences in performance of system components. Analyses of data from interlaboratory studies conducted under a common standard operating procedure identified outlier data and provided clues to specific causes. Moreover, interlaboratory variation reflected by the metrics indicates which system components vary the most between laboratories. Application of these metrics enables rational, quantitative quality assessment for proteomics and other LC-MS/MS analytical applications.


Molecular & Cellular Proteomics | 2010

Interlaboratory Study Characterizing a Yeast Performance Standard for Benchmarking LC-MS Platform Performance

Amanda G. Paulovich; Dean Billheimer; Amy-Joan L. Ham; Lorenzo Vega-Montoto; Paul A. Rudnick; David L. Tabb; Pei Wang; Ronald K. Blackman; David M. Bunk; Karl R. Clauser; Christopher R. Kinsinger; Birgit Schilling; Tony Tegeler; Asokan Mulayath Variyath; Mu Wang; Jeffrey R. Whiteaker; Lisa J. Zimmerman; David Fenyö; Steven A. Carr; Susan J. Fisher; Bradford W. Gibson; Mehdi Mesri; Thomas A. Neubert; Fred E. Regnier; Henry Rodriguez; Cliff Spiegelman; Stephen E. Stein; Paul Tempst; Daniel C. Liebler

Optimal performance of LC-MS/MS platforms is critical to generating high quality proteomics data. Although individual laboratories have developed quality control samples, there is no widely available performance standard of biological complexity (and associated reference data sets) for benchmarking of platform performance for analysis of complex biological proteomes across different laboratories in the community. Individual preparations of the yeast Saccharomyces cerevisiae proteome have been used extensively by laboratories in the proteomics community to characterize LC-MS platform performance. The yeast proteome is uniquely attractive as a performance standard because it is the most extensively characterized complex biological proteome and the only one associated with several large scale studies estimating the abundance of all detectable proteins. In this study, we describe a standard operating protocol for large scale production of the yeast performance standard and offer aliquots to the community through the National Institute of Standards and Technology where the yeast proteome is under development as a certified reference material to meet the long term needs of the community. Using a series of metrics that characterize LC-MS performance, we provide a reference data set demonstrating typical performance of commonly used ion trap instrument platforms in expert laboratories; the results provide a basis for laboratories to benchmark their own performance, to improve upon current methods, and to evaluate new technologies. Additionally, we demonstrate how the yeast reference, spiked with human proteins, can be used to benchmark the power of proteomics platforms for detection of differentially expressed proteins at different levels of concentration in a complex matrix, thereby providing a metric to evaluate and minimize preanalytical and analytical variation in comparative proteomics experiments.


Journal of Thoracic Oncology | 2007

Diagnostic Accuracy of MALDI Mass Spectrometric Analysis of Unfractionated Serum in Lung Cancer

Pinar Yildiz; Yu Shyr; Jamshedur Rahman; Noel R. Wardwell; Lisa J. Zimmerman; Bashar Shakhtour; William H. Gray; Shuo Chen; Ming Li; Heinrich Roder; Daniel C. Liebler; William L. Bigbee; Jill M. Siegfried; Joel L. Weissfeld; Adriana Gonzalez; Mathew Ninan; David H. Johnson; David P. Carbone; Richard M. Caprioli; Pierre P. Massion

Purpose: There is a critical need for improvements in the noninvasive diagnosis of lung cancer. We hypothesized that matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) analysis of the most abundant peptides in the serum may distinguish lung cancer cases from matched controls. Patients and Methods: We used MALDI MS to analyze unfractionated serum from a total of 288 cases and matched controls split into training (n = 182) and test sets (n = 106). We used a training–testing paradigm with application of the model profile defined in a training set to a blinded test cohort. Results: Reproducibility and lack of analytical bias was confirmed in quality-control studies. A serum proteomic signature of seven features in the training set reached an overall accuracy of 78%, a sensitivity of 67.4%, and a specificity of 88.9%. In the blinded test set, this signature reached an overall accuracy of 72.6 %, a sensitivity of 58%, and a specificity of 85.7%. The serum signature was associated with the diagnosis of lung cancer independently of gender, smoking status, smoking pack-years, and C-reactive protein levels. From this signature, we identified three discriminatory features as members of a cluster of truncated forms of serum amyloid A. Conclusions: We found a serum proteomic profile that discriminates lung cancer from matched controls. Proteomic analysis of unfractionated serum may have a role in the noninvasive diagnosis of lung cancer and will require methodological refinements and prospective validation to achieve clinical utility.

Collaboration


Dive into the Lisa J. Zimmerman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birgit Schilling

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Mehdi Mesri

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry Rodriguez

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

D. R. Mani

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ming Li

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge