Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brendan MacLean is active.

Publication


Featured researches published by Brendan MacLean.


Bioinformatics | 2010

Skyline: An Open Source Document Editor for Creating and Analyzing Targeted Proteomics Experiments

Brendan MacLean; Daniela M. Tomazela; Nicholas J. Shulman; Matthew C. Chambers; Gregory L. Finney; Barbara Frewen; Randall Kern; David L. Tabb; Daniel C. Liebler; Michael J. MacCoss

SUMMARY Skyline is a Windows client application for targeted proteomics method creation and quantitative data analysis. It is open source and freely available for academic and commercial use. The Skyline user interface simplifies the development of mass spectrometer methods and the analysis of data from targeted proteomics experiments performed using selected reaction monitoring (SRM). Skyline supports using and creating MS/MS spectral libraries from a wide variety of sources to choose SRM filters and verify results based on previously observed ion trap data. Skyline exports transition lists to and imports the native output files from Agilent, Applied Biosystems, Thermo Fisher Scientific and Waters triple quadrupole instruments, seamlessly connecting mass spectrometer output back to the experimental design document. The fast and compact Skyline file format is easily shared, even for experiments requiring many sample injections. A rich array of graphs displays results and provides powerful tools for inspecting data integrity as data are acquired, helping instrument operators to identify problems early. The Skyline dynamic report designer exports tabular data from the Skyline document model for in-depth analysis with common statistical tools. AVAILABILITY Single-click, self-updating web installation is available at http://proteome.gs.washington.edu/software/skyline. This web site also provides access to instructional videos, a support board, an issues list and a link to the source code project.


Nature Biotechnology | 2012

A Cross-platform Toolkit for Mass Spectrometry and Proteomics

Matthew C. Chambers; Brendan MacLean; Robert Burke; Dario Amodei; Daniel Ruderman; Steffen Neumann; Laurent Gatto; Bernd Fischer; Brian Pratt; Katherine Hoff; Darren Kessner; Natalie Tasman; Nicholas J. Shulman; Barbara Frewen; Tahmina A Baker; Mi-Youn Brusniak; Christopher Paulse; David M. Creasy; Lisa Flashner; Kian Kani; Chris Moulding; Sean L. Seymour; Lydia M Nuwaysir; Brent Lefebvre; Frank Kuhlmann; Joe Roark; Paape Rainer; Suckau Detlev; Tina Hemenway; Andreas Huhmer

Mass-spectrometry-based proteomics has become an important component of biological research. Numerous proteomics methods have been developed to identify and quantify the proteins in biological and clinical samples1, identify pathways affected by endogenous and exogenous perturbations2, and characterize protein complexes3. Despite successes, the interpretation of vast proteomics datasets remains a challenge. There have been several calls for improvements and standardization of proteomics data analysis frameworks, as well as for an application-programming interface for proteomics data access4,5. In response, we have developed the ProteoWizard Toolkit, a robust set of open-source, software libraries and applications designed to facilitate proteomics research. The libraries implement the first-ever, non-commercial, unified data access interface for proteomics, bridging field-standard open formats and all common vendor formats. In addition, diverse software classes enable rapid development of vendor-agnostic proteomics software. Additionally, ProteoWizard projects and applications, building upon the core libraries, are becoming standard tools for enabling significant proteomics inquiries.


Molecular & Cellular Proteomics | 2014

Targeted Peptide Measurements in Biology and Medicine: Best Practices for Mass Spectrometry-based Assay Development Using a Fit-for-Purpose Approach

Steven A. Carr; Susan E. Abbatiello; Bradley L. Ackermann; Christoph H. Borchers; Bruno Domon; Eric W. Deutsch; Russell P. Grant; Andrew N. Hoofnagle; Ruth Hüttenhain; John M. Koomen; Daniel C. Liebler; Tao Liu; Brendan MacLean; D. R. Mani; Elizabeth Mansfield; Hendrik Neubert; Amanda G. Paulovich; Lukas Reiter; Olga Vitek; Ruedi Aebersold; Leigh Anderson; Robert Bethem; Josip Blonder; Emily S. Boja; Julianne Cook Botelho; Michael T. Boyne; Ralph A. Bradshaw; Alma L. Burlingame; Daniel W. Chan; Hasmik Keshishian

Adoption of targeted mass spectrometry (MS) approaches such as multiple reaction monitoring (MRM) to study biological and biomedical questions is well underway in the proteomics community. Successful application depends on the ability to generate reliable assays that uniquely and confidently identify target peptides in a sample. Unfortunately, there is a wide range of criteria being applied to say that an assay has been successfully developed. There is no consensus on what criteria are acceptable and little understanding of the impact of variable criteria on the quality of the results generated. Publications describing targeted MS assays for peptides frequently do not contain sufficient information for readers to establish confidence that the tests work as intended or to be able to apply the tests described in their own labs. Guidance must be developed so that targeted MS assays with established performance can be made widely distributed and applied by many labs worldwide. To begin to address the problems and their solutions, a workshop was held at the National Institutes of Health with representatives from the multiple communities developing and employing targeted MS assays. Participants discussed the analytical goals of their experiments and the experimental evidence needed to establish that the assays they develop work as intended and are achieving the required levels of performance. Using this “fit-for-purpose” approach, the group defined three tiers of assays distinguished by their performance and extent of analytical characterization. Computational and statistical tools useful for the analysis of targeted MS results were described. Participants also detailed the information that authors need to provide in their manuscripts to enable reviewers and readers to clearly understand what procedures were performed and to evaluate the reliability of the peptide or protein quantification measurements reported. This paper presents a summary of the meeting and recommendations.


Molecular & Cellular Proteomics | 2012

Platform-independent and Label-free Quantitation of Proteomic Data Using MS1 Extracted Ion Chromatograms in Skyline APPLICATION TO PROTEIN ACETYLATION AND PHOSPHORYLATION

Birgit Schilling; Matthew J. Rardin; Brendan MacLean; Anna M. Zawadzka; Barbara Frewen; Michael P. Cusack; Dylan J. Sorensen; Michael S. Bereman; Enxuan Jing; Christine C. Wu; Eric Verdin; C. Ronald Kahn; Michael J. MacCoss; Bradford W. Gibson

Despite advances in metabolic and postmetabolic labeling methods for quantitative proteomics, there remains a need for improved label-free approaches. This need is particularly pressing for workflows that incorporate affinity enrichment at the peptide level, where isobaric chemical labels such as isobaric tags for relative and absolute quantitation and tandem mass tags may prove problematic or where stable isotope labeling with amino acids in cell culture labeling cannot be readily applied. Skyline is a freely available, open source software tool for quantitative data processing and proteomic analysis. We expanded the capabilities of Skyline to process ion intensity chromatograms of peptide analytes from full scan mass spectral data (MS1) acquired during HPLC MS/MS proteomic experiments. Moreover, unlike existing programs, Skyline MS1 filtering can be used with mass spectrometers from four major vendors, which allows results to be compared directly across laboratories. The new quantitative and graphical tools now available in Skyline specifically support interrogation of multiple acquisitions for MS1 filtering, including visual inspection of peak picking and both automated and manual integration, key features often lacking in existing software. In addition, Skyline MS1 filtering displays retention time indicators from underlying MS/MS data contained within the spectral library to ensure proper peak selection. The modular structure of Skyline also provides well defined, customizable data reports and thus allows users to directly connect to existing statistical programs for post hoc data analysis. To demonstrate the utility of the MS1 filtering approach, we have carried out experiments on several MS platforms and have specifically examined the performance of this method to quantify two important post-translational modifications: acetylation and phosphorylation, in peptide-centric affinity workflows of increasing complexity using mouse and human models.


Proteomics | 2012

Using iRT, a normalized retention time for more targeted measurement of peptides.

Claudia Escher; Lukas Reiter; Brendan MacLean; Reto Ossola; Franz Herzog; John Chilton; Michael J. MacCoss; Oliver Rinner

Multiple reaction monitoring (MRM) has recently become the method of choice for targeted quantitative measurement of proteins using mass spectrometry. The method, however, is limited in the number of peptides that can be measured in one run. This number can be markedly increased by scheduling the acquisition if the accurate retention time (RT) of each peptide is known. Here we present iRT, an empirically derived dimensionless peptide‐specific value that allows for highly accurate RT prediction. The iRT of a peptide is a fixed number relative to a standard set of reference iRT‐peptides that can be transferred across laboratories and chromatographic systems. We show that iRT facilitates the setup of multiplexed experiments with acquisition windows more than four times smaller compared to in silico RT predictions resulting in improved quantification accuracy. iRTs can be determined by any laboratory and shared transparently. The iRT concept has been implemented in Skyline, the most widely used software for MRM experiments.


Bioinformatics | 2014

MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments

Meena Choi; Ching-Yun Chang; Timothy Clough; Daniel Broudy; Trevor Killeen; Brendan MacLean; Olga Vitek

UNLABELLED MSstats is an R package for statistical relative quantification of proteins and peptides in mass spectrometry-based proteomics. Version 2.0 of MSstats supports label-free and label-based experimental workflows and data-dependent, targeted and data-independent spectral acquisition. It takes as input identified and quantified spectral peaks, and outputs a list of differentially abundant peptides or proteins, or summaries of peptide or protein relative abundance. MSstats relies on a flexible family of linear mixed models. AVAILABILITY AND IMPLEMENTATION The code, the documentation and example datasets are available open-source at www.msstats.org under the Artistic-2.0 license. The package can be downloaded from www.msstats.org or from Bioconductor www.bioconductor.org and used in an R command line workflow. The package can also be accessed as an external tool in Skyline (Broudy et al., 2014) and used via graphical user interface.


Analytical Chemistry | 2010

Effect of Collision Energy Optimization on the Measurement of Peptides by Selected Reaction Monitoring (SRM) Mass Spectrometry

Brendan MacLean; Daniela M. Tomazela; Susan E. Abbatiello; Shucha Zhang; Jeffrey R. Whiteaker; Amanda G. Paulovich; Steven A. Carr; Michael J. MacCoss

Proteomics experiments based on Selected Reaction Monitoring (SRM, also referred to as Multiple Reaction Monitoring or MRM) are being used to target large numbers of protein candidates in complex mixtures. At present, instrument parameters are often optimized for each peptide, a time and resource intensive process. Large SRM experiments are greatly facilitated by having the ability to predict MS instrument parameters that work well with the broad diversity of peptides they target. For this reason, we investigated the impact of using simple linear equations to predict the collision energy (CE) on peptide signal intensity and compared it with the empirical optimization of the CE for each peptide and transition individually. Using optimized linear equations, the difference between predicted and empirically derived CE values was found to be an average gain of only 7.8% of total peak area. We also found that existing commonly used linear equations fall short of their potential, and should be recalculated for each charge state and when introducing new instrument platforms. We provide a fully automated pipeline for calculating these equations and individually optimizing CE of each transition on SRM instruments from Agilent, Applied Biosystems, Thermo-Scientific and Waters in the open source Skyline software tool ( http://proteome.gs.washington.edu/software/skyline ).


Nature Methods | 2013

Multiplexed MS/MS for improved data-independent acquisition

Andreas Kuehn; Gennifer Merrihew; Nicholas W. Bateman; Brendan MacLean; Ying S Ting; Jesse D. Canterbury; Donald M Marsh; Markus Kellmann; Christine C. Wu; Michael J. MacCoss

In mass spectrometry–based proteomics, data-independent acquisition (DIA) strategies can acquire a single data set useful for both identification and quantification of detectable peptides in a complex mixture. However, DIA data are noisy owing to a typical five- to tenfold reduction in precursor selectivity compared to data obtained with data-dependent acquisition or selected reaction monitoring. We demonstrate a multiplexing strategy, MSX, for DIA analysis that increases precursor selectivity fivefold.


Journal of Proteome Research | 2009

Expediting the Development of Targeted SRM Assays: Using Data from Shotgun Proteomics to Automate Method Development

Amol Prakash; Daniela M. Tomazela; Barbara Frewen; Brendan MacLean; Gennifer Merrihew; Scott Peterman; Michael J. MacCoss

Selected reaction monitoring (SRM) is a powerful tandem mass spectrometry method that can be used to monitor target peptides within a complex protein digest. The specificity and sensitivity of the approach, as well as its capability to multiplex the measurement of many analytes in parallel, has made it a technology of particular promise for hypothesis driven proteomics. An underappreciated step in the development of an assay to measure many peptides in parallel is the time and effort necessary to establish a usable assay. Here we report the use of shotgun proteomics data to expedite the selection of SRM transitions for target peptides of interest. The use of tandem mass spectrometry data acquired on an LTQ ion trap mass spectrometer can accurately predict which fragment ions will produce the greatest signal in an SRM assay using a triple quadrupole mass spectrometer. Furthermore, we present a scoring routine that can compare the targeted SRM chromatogram data with an MS/MS spectrum acquired by data-dependent acquisition and stored in a library. This scoring routine is invaluable in determining which signal in the chromatogram from a complex mixture best represents the target peptide. These algorithmic developments have been implemented in a software package that is available from the authors upon request.


Nature Protocols | 2015

Building high-quality assay libraries for targeted analysis of SWATH MS data.

Olga T. Schubert; Ludovic C. Gillet; Ben C. Collins; Pedro Navarro; George Rosenberger; Witold Wolski; Henry H N Lam; Dario Amodei; Parag Mallick; Brendan MacLean; Ruedi Aebersold

Targeted proteomics by selected/multiple reaction monitoring (S/MRM) or, on a larger scale, by SWATH (sequential window acquisition of all theoretical spectra) MS (mass spectrometry) typically relies on spectral reference libraries for peptide identification. Quality and coverage of these libraries are therefore of crucial importance for the performance of the methods. Here we present a detailed protocol that has been successfully used to build high-quality, extensive reference libraries supporting targeted proteomics by SWATH MS. We describe each step of the process, including data acquisition by discovery proteomics, assertion of peptide-spectrum matches (PSMs), generation of consensus spectra and compilation of MS coordinates that uniquely define each targeted peptide. Crucial steps such as false discovery rate (FDR) control, retention time normalization and handling of post-translationally modified peptides are detailed. Finally, we show how to use the library to extract SWATH data with the open-source software Skyline. The protocol takes 2–3 d to complete, depending on the extent of the library and the computational resources available.

Collaboration


Dive into the Brendan MacLean's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birgit Schilling

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bradford W. Gibson

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Vagisha Sharma

University of Washington

View shared research outputs
Top Co-Authors

Avatar

D. R. Mani

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga Vitek

Northeastern University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge