Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bonita L. Samuels is active.

Publication


Featured researches published by Bonita L. Samuels.


Journal of Climate | 2012

GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics

John P. Dunne; Jasmin G. John; Alistair J. Adcroft; Stephen M. Griffies; Robert Hallberg; Elena Shevliakova; Ronald J. Stouffer; William F. Cooke; Krista A. Dunne; Matthew J. Harrison; John P. Krasting; Sergey Malyshev; P. C. D. Milly; Peter J. Phillipps; Lori T. Sentman; Bonita L. Samuels; Michael J. Spelman; Michael Winton; Andrew T. Wittenberg; Niki Zadeh

AbstractThe authors describe carbon system formulation and simulation characteristics of two new global coupled carbon–climate Earth System Models (ESM), ESM2M and ESM2G. These models demonstrate good climate fidelity as described in part I of this study while incorporating explicit and consistent carbon dynamics. The two models differ almost exclusively in the physical ocean component; ESM2M uses the Modular Ocean Model version 4.1 with vertical pressure layers, whereas ESM2G uses generalized ocean layer dynamics with a bulk mixed layer and interior isopycnal layers. On land, both ESMs include a revised land model to simulate competitive vegetation distributions and functioning, including carbon cycling among vegetation, soil, and atmosphere. In the ocean, both models include new biogeochemical algorithms including phytoplankton functional group dynamics with flexible stoichiometry. Preindustrial simulations are spun up to give stable, realistic carbon cycle means and variability. Significant differences...


Journal of Climate | 2006

GFDL's CM2 Global Coupled Climate Models. Part II: The Baseline Ocean Simulation

Anand Gnanadesikan; Keith W. Dixon; Stephen M. Griffies; V. Balaji; Marcelo Barreiro; J. Anthony Beesley; William F. Cooke; Thomas L. Delworth; Rüdiger Gerdes; Matthew J. Harrison; Isaac M. Held; William J. Hurlin; Hyun-Chul Lee; Zhi Liang; Giang Nong; R. C. Pacanowski; Anthony Rosati; Joellen L. Russell; Bonita L. Samuels; Qian Song; Michael J. Spelman; Ronald J. Stouffer; Colm Sweeney; Gabriel A. Vecchi; Michael Winton; Andrew T. Wittenberg; Fanrong Zeng; Rong Zhang; John P. Dunne

The current generation of coupled climate models run at the Geophysical Fluid Dynamics Laboratory (GFDL) as part of the Climate Change Science Program contains ocean components that differ in almost every respect from those contained in previous generations of GFDL climate models. This paper summarizes the new physical features of the models and examines the simulations that they produce. Of the two new coupled climate model versions 2.1 (CM2.1) and 2.0 (CM2.0), the CM2.1 model represents a major improvement over CM2.0 in most of the major oceanic features examined, with strikingly lower drifts in hydrographic fields such as temperature and salinity, more realistic ventilation of the deep ocean, and currents that are closer to their observed values. Regional analysis of the differences between the models highlights the importance of wind stress in determining the circulation, particularly in the Southern Ocean. At present, major errors in both models are associated with Northern Hemisphere Mode Waters and outflows from overflows, particularly the Mediterranean Sea and Red Sea.


Journal of Physical Oceanography | 1998

On the ocean's large-scale circulation near the limit of no vertical mixing

J. R. Toggweiler; Bonita L. Samuels

Abstract By convention, the ocean’s large-scale circulation is assumed to be a thermohaline overturning driven by the addition and extraction of buoyancy at the surface and vertical mixing in the interior. Previous work suggests that the overturning should die out as vertical mixing rates are reduced to zero. In this paper, a formal energy analysis is applied to a series of ocean general circulation models to evaluate changes in the large-scale circulation over a range of vertical mixing rates. Two different model configurations are used. One has an open zonal channel and an Antarctic Circumpolar Current (ACC). The other configuration does not. The authors find that a vigorous large-scale circulation persists at the limit of no mixing in the model with a wind-driven ACC. A wind-powered overturning circulation linked to the ACC can exist without vertical mixing and without much energy input from surface buoyancy forces.


Journal of Climate | 2011

The GFDL CM3 Coupled Climate Model: Characteristics of the Ocean and Sea Ice Simulations

Stephen M. Griffies; Michael Winton; Leo J. Donner; Larry W. Horowitz; Stephanie M. Downes; Riccardo Farneti; Anand Gnanadesikan; William J. Hurlin; Hyun-Chul Lee; Zhi Liang; Jaime B. Palter; Bonita L. Samuels; Andrew T. Wittenberg; Bruce Wyman; Jianjun Yin; Niki Zadeh

AbstractThis paper documents time mean simulation characteristics from the ocean and sea ice components in a new coupled climate model developed at the NOAA Geophysical Fluid Dynamics Laboratory (GFDL). The GFDL Climate Model version 3 (CM3) is formulated with effectively the same ocean and sea ice components as the earlier CM2.1 yet with extensive developments made to the atmosphere and land model components. Both CM2.1 and CM3 show stable mean climate indices, such as large-scale circulation and sea surface temperatures (SSTs). There are notable improvements in the CM3 climate simulation relative to CM2.1, including a modified SST bias pattern and reduced biases in the Arctic sea ice cover. The authors anticipate SST differences between CM2.1 and CM3 in lower latitudes through analysis of the atmospheric fluxes at the ocean surface in corresponding Atmospheric Model Intercomparison Project (AMIP) simulations. In contrast, SST changes in the high latitudes are dominated by ocean and sea ice effects absen...


Journal of Physical Oceanography | 2005

Impacts of Shortwave Penetration Depth on Large-Scale Ocean Circulation and Heat Transport

Colm Sweeney; Anand Gnanadesikan; Stephen M. Griffies; Matthew J. Harrison; Anthony Rosati; Bonita L. Samuels

The impact of changes in shortwave radiation penetration depth on the global ocean circulation and heat transport is studied using the GFDL Modular Ocean Model (MOM4) with two independent parameterizations that use ocean color to estimate the penetration depth of shortwave radiation. Ten to eighteen percent increases in the depth of 1% downwelling surface irradiance levels results in an increase in mixed layer depths of 3–20 m in the subtropical and tropical regions with no change at higher latitudes. While 1D models have predicted that sea surface temperatures at the equator would decrease with deeper penetration of solar irradiance, this study shows a warming, resulting in a 10% decrease in the required restoring heat flux needed to maintain climatological sea surface temperatures in the eastern equatorial Atlantic and Pacific Oceans. The decrease in the restoring heat flux is attributed to a slowdown in heat transport (5%) from the Tropics and an increase in the temperature of submixed layer waters being transported into the equatorial regions. Calculations were made using a simple relationship between mixed layer depth and meridional mass transport. When compared with model diagnostics, these calculations suggest that the slowdown in heat transport is primarily due to off-equatorial increases in mixed layer depths. At higher latitudes (5°–40°), higher restoring heat fluxes are needed to maintain sea surface temperatures because of deeper mixed layers and an increase in storage of heat below the mixed layer. This study offers a way to evaluate the changes in irradiance penetration depths in coupled ocean–atmosphere GCMs and the potential effect that large-scale changes in chlorophyll a concentrations will have on ocean circulation.


Journal of Climate | 2013

Connecting Changing Ocean Circulation with Changing Climate

Michael Winton; Stephen M. Griffies; Bonita L. Samuels; Jorge L. Sarmiento; Thomas L. Frölicher

AbstractThe influence of changing ocean currents on climate change is evaluated by comparing an earth system model’s response to increased CO2 with and without an ocean circulation response. Inhibiting the ocean circulation response, by specifying a seasonally varying preindustrial climatology of currents, has a much larger influence on the heat storage pattern than on the carbon storage pattern. The heat storage pattern without circulation changes resembles carbon storage (either with or without circulation changes) more than it resembles the heat storage when currents are allowed to respond. This is shown to be due to the larger magnitude of the redistribution transport—the change in transport due to circulation anomalies acting on control climate gradients—for heat than for carbon. The net ocean heat and carbon uptake are slightly reduced when currents are allowed to respond. Hence, ocean circulation changes potentially act to warm the surface climate. However, the impact of the reduced carbon uptake o...


Journal of Climate | 2014

The Deep Ocean Buoyancy Budget and Its Temporal Variability

Jaime B. Palter; Stephen M. Griffies; Bonita L. Samuels; Eric D. Galbraith; Anand Gnanadesikan; Andreas Klocker

AbstractDespite slow rates of ocean mixing, observational and modeling studies suggest that buoyancy is redistributed to all depths of the ocean on surprisingly short interannual to decadal time scales. The mechanisms responsible for this redistribution remain poorly understood. This work uses an Earth system model to evaluate the global steady-state ocean buoyancy (and related steric sea level) budget, its interannual variability, and its transient response to a doubling of CO2 over 70 years, with a focus on the deep ocean. At steady state, the simple view of vertical advective–diffusive balance for the deep ocean holds at low to midlatitudes. At higher latitudes, the balance depends on a myriad of additional terms, namely mesoscale and submesoscale advection, convection and overflows from marginal seas, and terms related to the nonlinear equation of state. These high-latitude processes rapidly communicate anomalies in surface buoyancy forcing to the deep ocean locally; the deep, high-latitude changes th...


Journal of Climate | 2016

The Transient Response of Southern Ocean Circulation to Geothermal Heating in a Global Climate Model

Stephanie M. Downes; Andrew McC. Hogg; Stephen M. Griffies; Bonita L. Samuels

AbstractModel and observational studies have concluded that geothermal heating significantly alters the global overturning circulation and the properties of the widely distributed Antarctic Bottom Water. Here two distinct geothermal heat flux datasets are tested under different experimental designs in a fully coupled model that mimics the control run of a typical Coupled Model Intercomparison Project (CMIP) climate model. The regional analysis herein reveals that bottom temperature and transport changes, due to the inclusion of geothermal heating, are propagated throughout the water column, most prominently in the Southern Ocean, with the background density structure and major circulation pathways acting as drivers of these changes. While geothermal heating enhances Southern Ocean abyssal overturning circulation by 20%–50%, upwelling of warmer deep waters and cooling of upper ocean waters within the Antarctic Circumpolar Current (ACC) region decrease its transport by 3–5 Sv (1 Sv = 106 m3 s−1). The transi...


Ocean Modelling | 2009

Coordinated Ocean-ice Reference Experiments (COREs)

Stephen M. Griffies; Arne Biastoch; Claus W. Böning; Frank O. Bryan; Gokhan Danabasoglu; Eric P. Chassignet; Matthew H. England; Rüdiger Gerdes; Helmuth Haak; Robert Hallberg; Wilco Hazeleger; Johann H. Jungclaus; William G. Large; Gurvan Madec; Anna Pirani; Bonita L. Samuels; Markus Scheinert; Alex Sen Gupta; C. Severijns; Harper L. Simmons; Anne-Marie Treguier; Mike Winton; Stephen Yeager; Jianjun Yin


Ocean Science | 2005

Formulation of an ocean model for global climate simulations

Stephen M. Griffies; Anand Gnanadesikan; Keith W. Dixon; John P. Dunne; Rüdiger Gerdes; M. J. Harrison; Anthony Rosati; Joellen L. Russell; Bonita L. Samuels; Michael J. Spelman; Michael Winton; Rong Zhang

Collaboration


Dive into the Bonita L. Samuels's collaboration.

Top Co-Authors

Avatar

Stephen M. Griffies

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gokhan Danabasoglu

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergey Danilov

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Hallberg

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mats Bentsen

Bjerknes Centre for Climate Research

View shared research outputs
Top Co-Authors

Avatar

Mehmet Ilicak

Bjerknes Centre for Climate Research

View shared research outputs
Top Co-Authors

Avatar

Jianhua Lu

Florida State University

View shared research outputs
Top Co-Authors

Avatar

William G. Large

National Center for Atmospheric Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge