Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Hallberg is active.

Publication


Featured researches published by Robert Hallberg.


Journal of Climate | 2012

GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics

John P. Dunne; Jasmin G. John; Alistair J. Adcroft; Stephen M. Griffies; Robert Hallberg; Elena Shevliakova; Ronald J. Stouffer; William F. Cooke; Krista A. Dunne; Matthew J. Harrison; John P. Krasting; Sergey Malyshev; P. C. D. Milly; Peter J. Phillipps; Lori T. Sentman; Bonita L. Samuels; Michael J. Spelman; Michael Winton; Andrew T. Wittenberg; Niki Zadeh

AbstractThe authors describe carbon system formulation and simulation characteristics of two new global coupled carbon–climate Earth System Models (ESM), ESM2M and ESM2G. These models demonstrate good climate fidelity as described in part I of this study while incorporating explicit and consistent carbon dynamics. The two models differ almost exclusively in the physical ocean component; ESM2M uses the Modular Ocean Model version 4.1 with vertical pressure layers, whereas ESM2G uses generalized ocean layer dynamics with a bulk mixed layer and interior isopycnal layers. On land, both ESMs include a revised land model to simulate competitive vegetation distributions and functioning, including carbon cycling among vegetation, soil, and atmosphere. In the ocean, both models include new biogeochemical algorithms including phytoplankton functional group dynamics with flexible stoichiometry. Preindustrial simulations are spun up to give stable, realistic carbon cycle means and variability. Significant differences...


Journal of Physical Oceanography | 2006

The Role of Eddies in Determining the Structure and Response of the Wind-Driven Southern Hemisphere Overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) Project

Robert Hallberg; Anand Gnanadesikan

Abstract The Modeling Eddies in the Southern Ocean (MESO) project uses numerical sensitivity studies to examine the role played by Southern Ocean winds and eddies in determining the density structure of the global ocean and the magnitude and structure of the global overturning circulation. A hemispheric isopycnal-coordinate ocean model (which avoids numerical diapycnal diffusion) with realistic geometry is run with idealized forcing at a range of resolutions from coarse (2°) to eddy-permitting (1/6°). A comparison of coarse resolutions with fine resolutions indicates that explicit eddies affect both the structure of the overturning and the response of the overturning to wind stress changes. While the presence of resolved eddies does not greatly affect the prevailing qualitative picture of the ocean circulation, it alters the overturning cells involving the Southern Ocean transformation of dense deep waters and light waters of subtropical origin into intermediate waters. With resolved eddies, the surface-t...


Journal of Physical Oceanography | 2008

Parameterization of Mixed Layer Eddies. Part I: Theory and Diagnosis

Baylor Fox-Kemper; Raffaele Ferrari; Robert Hallberg

Ageostrophic baroclinic instabilities develop within the surface mixed layer of the ocean at horizontal fronts and efficiently restratify the upper ocean. In this paper a parameterization for the restratification driven by finite-amplitude baroclinic instabilities of the mixed layer is proposed in terms of an overturning streamfunction that tilts isopycnals from the vertical to the horizontal. The streamfunction is proportional to the product of the horizontal density gradient, the mixed layer depth squared, and the inertial period. Hence restratification proceeds faster at strong fronts in deep mixed layers with a weak latitude dependence. In this paper the parameterization is theoretically motivated, confirmed to perform well for a wide range of mixed layer depths, rotation rates, and vertical and horizontal stratifications. It is shown to be superior to alternative extant parameterizations of baroclinic instability for the problem of mixed layer restratification. Two companion papers discuss the numerical implementation and the climate impacts of this parameterization.


Monthly Weather Review | 2000

Spurious Diapycnal Mixing Associated with Advection in a z-Coordinate Ocean Model

Stephen M. Griffies; R. C. Pacanowski; Robert Hallberg

Abstract This paper discusses spurious diapycnal mixing associated with the transport of density in a z-coordinate ocean model. A general method, based on the work of Winters and collaborators, is employed for empirically diagnosing an effective diapycnal diffusivity corresponding to any numerical transport process. This method is then used to quantify the spurious mixing engendered by various numerical representations of advection. Both coarse and fine resolution examples are provided that illustrate the importance of adequately resolving the admitted scales of motion in order to maintain a small amount of mixing consistent with that measured within the ocean’s pycnocline. Such resolution depends on details of the advection scheme, momentum and tracer dissipation, and grid resolution. Vertical transport processes, such as convective adjustment, act as yet another means to increase the spurious mixing introduced by dispersive errors from numerical advective fluxes.


Journal of Physical Oceanography | 2000

On the relationship of the Circumpolar Current to southern hemisphere winds in coarse-resolution ocean models

Anand Gnanadesikan; Robert Hallberg

Abstract The response of the Circumpolar Current to changing winds has been the subject of much debate. To date most theories of the current have tried to predict the transport using various forms of momentum balance. This paper argues that it is also important to consider thermodynamic as well as dynamic balances. Within large-scale general circulation models, increasing eastward winds within the Southern Ocean drive a northward Ekman flux of light water, which in turn produces a deeper pycnocline and warmer deep water to the north of the Southern Ocean. This in turn results in much larger thermal wind shear across the Circumpolar Current, which, given relatively small near-bottom velocities, results in an increase in Antarctic Circumpolar Current (ACC) transport. The Ekman flux near the surface is closed by a deep return flow below the depths of the ridges. A simple model that illustrates this picture is presented in which the ACC depends most strongly on the winds at the northern and southern edges of ...


Bulletin of the American Meteorological Society | 2009

Improving Oceanic Overflow Representation in Climate Models: The Gravity Current Entrainment Climate Process Team

Sonya Legg; Bruce P. Briegleb; Yeon S. Chang; Eric P. Chassignet; Gokhan Danabasoglu; Tal Ezer; Arnold L. Gordon; Stephen M. Griffies; Robert Hallberg; Laura Jackson; William G. Large; Tamay M. Özgökmen; Hartmut Peters; Jim Price; Ulrike Riemenschneider; Wanli Wu; Xiaobiao Xu; Jiayan Yang

Abstract Oceanic overflows are bottom-trapped density currents originating in semienclosed basins, such as the Nordic seas, or on continental shelves, such as the Antarctic shelf. Overflows are the source of most of the abyssal waters, and therefore play an important role in the large-scale ocean circulation, forming a component of the sinking branch of the thermohaline circulation. As they descend the continental slope, overflows mix vigorously with the surrounding oceanic waters, changing their density and transport significantly. These mixing processes occur on spatial scales well below the resolution of ocean climate models, with the result that deep waters and deep western boundary currents are simulated poorly. The Gravity Current Entrainment Climate Process Team was established by the U.S. Climate Variability and Prediction (CLIVAR) Program to accelerate the development and implementation of improved representations of overflows within large-scale climate models, bringing together climate model dev...


Journal of Physical Oceanography | 1998

Simulation of Density-Driven Frictional Downslope Flow in Z-Coordinate Ocean Models

Michael Winton; Robert Hallberg; Anand Gnanadesikan

Abstract An important component of the ocean’s thermohaline circulation is the sinking of dense water from continental shelves to abyssal depths. Such downslope flow is thought to be a consequence of bottom stress retarding the alongslope flow of density-driven plumes. In this paper the authors explore the potential for explicitly simulating this simple mechanism in z-coordinate models. A series of experiments are performed using a twin density-coordinate model simulation as a standard of comparison. The adiabatic nature of the experiments and the importance of bottom slope make it more likely that the density-coordinate model will faithfully reproduce the solution. The difficulty of maintaining the density signal as the plume descends the slope is found to be the main impediment to accurate simulation in the z-coordinate model. The results of process experiments suggest that the model solutions will converge when the z-coordinate model has sufficient vertical resolution to resolve the bottom viscous laye...


Journal of Physical Oceanography | 1996

Buoyancy-Driven Circulation in an Ocean Basin with Isopycnals Intersecting the Sloping Boundary

Robert Hallberg; Peter B. Rhines

Abstract The dynamics that govern the spreading of a convectively formed water mass in an ocean with sloping boundaries are examined using an isopycnal model that permits the interface between the layers to intersect the sloping boundaries. The simulations presented here use a two-layer configuration to demonstrate some of the pronounced differences in a baroclinically forced flow between the response in a basin with a flat bottom and vertical walls and a more realistic basin bounded by a sloping bottom. Each layer has a directly forced signal that propagates away from the forcing along the potential vorticity (PV) contours of that layer. Paired, opposed boundary currents are generated by refracted topographic Rossby waves, rather than Kelvin waves. It is impossible to decompose the flow into globally independent baroclinic and barotropic modes; topography causes the barotropic (i.e., depth averaged) response to buoyancy forcing to be just as strong as the baroclinic response. Because layer PV contours di...


Bulletin of the American Meteorological Society | 2013

Challenges to understanding the dynamic response of Greenland's marine terminating glaciers to oceanic and atmospheric forcing

Fiamma Straneo; Patrick Heimbach; Olga V. Sergienko; Gordon S. Hamilton; Ginny A. Catania; Stephen M. Griffies; Robert Hallberg; Adrian Jenkins; Ian Joughin; Roman J. Motyka; W. Tad Pfeffer; Stephen F. Price; Eric Rignot; Theodore A. Scambos; Martin Truffer; Andreas Vieli

A working group on Greenland Ice Sheet-Ocean Interactions (GRISO), composed of representatives from the multiple disciplines involved, was established in January 2011 to develop strategies to address dynamic response of Greenlands glaciers to climate forcing. Critical aspects of Greenlands coupled ice sheet-ocean system are identified, and a research agenda is outlined that will yield fundamental insights into how the ice sheet and ocean interact, their role in Earths climate system, their regional and global effects, and probable trajectories of future changes. Key elements of the research agenda are focused process studies, sustained observational efforts at key sites, and inclusion of the relevant dynamics in Earth system models. Interdisciplinary and multiagency efforts, as well as international cooperation, are crucial to making progress on this novel and complex problem. This will prove as a significant step toward fulfilling the goal of credibly projecting sea level rise over the coming decades and century.


Journal of Physical Oceanography | 2001

An Exploration of the Role of Transient Eddies in Determining the Transport of a Zonally Reentrant Current

Robert Hallberg; Anand Gnanadesikan

The meridional Ekman transport in a zonally reentrant channel may be balanced by diabatic circulations, standing eddies associated with topography, or by Lagrangian mean eddy mass fluxes. A simple model is used to explore the interaction between these mechanisms. A key assumption of this study is that diabatic forcing in the poleward edge of the channel acts to create lighter fluid, as is the case with net freshwater fluxes into the Southern Ocean. For weak wind forcing or strong diabatic constraint, a simple scaling argument accurately predicts the level of baroclinic shear. However, given our understanding of the relative magnitudes of Ekman flux and deep upwelling, this is not the appropriate parameter range for the Antarctic Circumpolar Current. With stronger wind stresses, eddies are prominent, with baroclinic instability initially developing in the vicinity of large topography. Arguments have been advanced by a number of authors that baroclinic instability should limit the velocity shear, leading to a stiff upper limit on the transport of the current. However, in the simulations presented here baroclinic instability is largely confined to the region of topographic highs, and the approach to a current that is independent of the wind stress occurs gradually. Several recent parameterizations of transient eddy fluxes do not reproduce key features of the observed behavior.

Collaboration


Dive into the Robert Hallberg's collaboration.

Top Co-Authors

Avatar

Stephen M. Griffies

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Alistair Adcroft

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bonita L. Samuels

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gokhan Danabasoglu

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Ronald J. Stouffer

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Harper L. Simmons

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Matthew J. Harrison

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge