Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brandi L. Cantarel is active.

Publication


Featured researches published by Brandi L. Cantarel.


Nature | 2009

A core gut microbiome in obese and lean twins

Peter J. Turnbaugh; Micah Hamady; Tanya Yatsunenko; Brandi L. Cantarel; Alexis E. Duncan; Ruth E. Ley; Mitchell L. Sogin; William J. Jones; Bruce A. Roe; Jason Affourtit; Michael Egholm; Bernard Henrissat; Andrew C. Heath; Rob Knight; Jeffrey I. Gordon

The human distal gut harbours a vast ensemble of microbes (the microbiota) that provide important metabolic capabilities, including the ability to extract energy from otherwise indigestible dietary polysaccharides. Studies of a few unrelated, healthy adults have revealed substantial diversity in their gut communities, as measured by sequencing 16S rRNA genes, yet how this diversity relates to function and to the rest of the genes in the collective genomes of the microbiota (the gut microbiome) remains obscure. Studies of lean and obese mice suggest that the gut microbiota affects energy balance by influencing the efficiency of calorie harvest from the diet, and how this harvested energy is used and stored. Here we characterize the faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers, to address how host genotype, environmental exposure and host adiposity influence the gut microbiome. Analysis of 154 individuals yielded 9,920 near full-length and 1,937,461 partial bacterial 16S rRNA sequences, plus 2.14 gigabases from their microbiomes. The results reveal that the human gut microbiome is shared among family members, but that each person’s gut microbial community varies in the specific bacterial lineages present, with a comparable degree of co-variation between adult monozygotic and dizygotic twin pairs. However, there was a wide array of shared microbial genes among sampled individuals, comprising an extensive, identifiable ‘core microbiome’ at the gene, rather than at the organismal lineage, level. Obesity is associated with phylum-level changes in the microbiota, reduced bacterial diversity and altered representation of bacterial genes and metabolic pathways. These results demonstrate that a diversity of organismal assemblages can nonetheless yield a core microbiome at a functional level, and that deviations from this core are associated with different physiological states (obese compared with lean).


Nucleic Acids Research | 2009

The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics

Brandi L. Cantarel; Pedro M. Coutinho; Corinne Rancurel; Thomas Bernard; Vincent Lombard; Bernard Henrissat

The Carbohydrate-Active Enzyme (CAZy) database is a knowledge-based resource specialized in the enzymes that build and breakdown complex carbohydrates and glycoconjugates. As of September 2008, the database describes the present knowledge on 113 glycoside hydrolase, 91 glycosyltransferase, 19 polysaccharide lyase, 15 carbohydrate esterase and 52 carbohydrate-binding module families. These families are created based on experimentally characterized proteins and are populated by sequences from public databases with significant similarity. Protein biochemical information is continuously curated based on the available literature and structural information. Over 6400 proteins have assigned EC numbers and 700 proteins have a PDB structure. The classification (i) reflects the structural features of these enzymes better than their sole substrate specificity, (ii) helps to reveal the evolutionary relationships between these enzymes and (iii) provides a convenient framework to understand mechanistic properties. This resource has been available for over 10 years to the scientific community, contributing to information dissemination and providing a transversal nomenclature to glycobiologists. More recently, this resource has been used to improve the quality of functional predictions of a number genome projects by providing expert annotation. The CAZy resource resides at URL: http://www.cazy.org/.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla

Michael A. Mahowald; Federico E. Rey; Henning Seedorf; Peter J. Turnbaugh; Robert S. Fulton; Aye Wollam; Neha Shah; Chunyan Wang; Vincent Magrini; Richard Wilson; Brandi L. Cantarel; Pedro M. Coutinho; Bernard Henrissat; Lara W. Crock; Alison Russell; Nathan C. VerBerkmoes; Robert L. Hettich; Jeffrey I. Gordon

The adult human distal gut microbial community is typically dominated by 2 bacterial phyla (divisions), the Firmicutes and the Bacteroidetes. Little is known about the factors that govern the interactions between their members. Here, we examine the niches of representatives of both phyla in vivo. Finished genome sequences were generated from Eubacterium rectale and E. eligens, which belong to Clostridium Cluster XIVa, one of the most common gut Firmicute clades. Comparison of these and 25 other gut Firmicutes and Bacteroidetes indicated that the Firmicutes possess smaller genomes and a disproportionately smaller number of glycan-degrading enzymes. Germ-free mice were then colonized with E. rectale and/or a prominent human gut Bacteroidetes, Bacteroides thetaiotaomicron, followed by whole-genome transcriptional profiling, high-resolution proteomic analysis, and biochemical assays of microbial–microbial and microbial–host interactions. B. thetaiotaomicron adapts to E. rectale by up-regulating expression of a variety of polysaccharide utilization loci encoding numerous glycoside hydrolases, and by signaling the host to produce mucosal glycans that it, but not E. rectale, can access. E. rectale adapts to B. thetaiotaomicron by decreasing production of its glycan-degrading enzymes, increasing expression of selected amino acid and sugar transporters, and facilitating glycolysis by reducing levels of NADH, in part via generation of butyrate from acetate, which in turn is used by the gut epithelium. This simplified model of the human gut microbiota illustrates niche specialization and functional redundancy within members of its major bacterial phyla, and the importance of host glycans as a nutrient foundation that ensures ecosystem stability.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Obligate Biotrophy Features Unraveled by the Genomic Analysis of the Rust Fungi, Melampsora larici-populina and Puccinia graminis f. sp. tritici

Sébastien Duplessis; Christina A. Cuomo; Yao-Cheng Lin; Andrea Aerts; Emilie Tisserant; Claire Veneault-Fourrey; David L. Joly; Stéphane Hacquard; Joelle Amselem; Brandi L. Cantarel; Readman Chiu; Pedro Couthinho; Nicolas Feau; Matthew A. Field; Pascal Frey; Eric Gelhaye; Jonathan M. Goldberg; Manfred Grabherr; Chinnappa D. Kodira; Annegret Kohler; Ursula Kües; Erika Lindquist; Susan Lucas; Rohit Mago; Evan Mauceli; Emmanuelle Morin; Claude Murat; Jasmyn Pangilinan; Robert F. Park; Matthew Pearson

Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.


PLOS ONE | 2012

Integrated metagenomics/metaproteomics reveals human host microbiota signatures of Crohn's disease

Alison R. Erickson; Brandi L. Cantarel; Regina Lamendella; Youssef Darzi; Emmanuel F. Mongodin; Chongle Pan; Manesh B Shah; Jonas Halfvarson; Curt Tysk; Bernard Henrissat; Jeroen Raes; Nathan C. VerBerkmoes; Claire M. Fraser; Robert L. Hettich; Janet K. Jansson

Crohns disease (CD) is an inflammatory bowel disease of complex etiology, although dysbiosis of the gut microbiota has been implicated in chronic immune-mediated inflammation associated with CD. Here we combined shotgun metagenomic and metaproteomic approaches to identify potential functional signatures of CD in stool samples from six twin pairs that were either healthy, or that had CD in the ileum (ICD) or colon (CCD). Integration of these omics approaches revealed several genes, proteins, and pathways that primarily differentiated ICD from healthy subjects, including depletion of many proteins in ICD. In addition, the ICD phenotype was associated with alterations in bacterial carbohydrate metabolism, bacterial-host interactions, as well as human host-secreted enzymes. This eco-systems biology approach underscores the link between the gut microbiota and functional alterations in the pathophysiology of Crohns disease and aids in identification of novel diagnostic targets and disease specific biomarkers.


Genome Research | 2010

Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes

Lena Tasse; Juliette Bercovici; Sandra Pizzut-Serin; Patrick Robe; Julien Tap; Christophe Klopp; Brandi L. Cantarel; Pedro M. Coutinho; Bernard Henrissat; Marion Leclerc; Joël Doré; Pierre Monsan; Magali Remaud-Siméon; Gabrielle Potocki-Véronèse

The human gut microbiome is a complex ecosystem composed mainly of uncultured bacteria. It plays an essential role in the catabolism of dietary fibers, the part of plant material in our diet that is not metabolized in the upper digestive tract, because the human genome does not encode adequate carbohydrate active enzymes (CAZymes). We describe a multi-step functionally based approach to guide the in-depth pyrosequencing of specific regions of the human gut metagenome encoding the CAZymes involved in dietary fiber breakdown. High-throughput functional screens were first applied to a library covering 5.4 × 10(9) bp of metagenomic DNA, allowing the isolation of 310 clones showing beta-glucanase, hemicellulase, galactanase, amylase, or pectinase activities. Based on the results of refined secondary screens, sequencing efforts were reduced to 0.84 Mb of nonredundant metagenomic DNA, corresponding to 26 clones that were particularly efficient for the degradation of raw plant polysaccharides. Seventy-three CAZymes from 35 different families were discovered. This corresponds to a fivefold target-gene enrichment compared to random sequencing of the human gut metagenome. Thirty-three of these CAZy encoding genes are highly homologous to prevalent genes found in the gut microbiome of at least 20 individuals for whose metagenomic data are available. Moreover, 18 multigenic clusters encoding complementary enzyme activities for plant cell wall degradation were also identified. Gene taxonomic assignment is consistent with horizontal gene transfer events in dominant gut species and provides new insights into the human gut functional trophic chain.


PLOS ONE | 2012

Complex Carbohydrate Utilization by the Healthy Human Microbiome

Brandi L. Cantarel; Vincent Lombard; Bernard Henrissat

The various ecological habitats in the human body provide microbes a wide array of nutrient sources and survival challenges. Advances in technology such as DNA sequencing have allowed a deeper perspective into the molecular function of the human microbiota than has been achievable in the past. Here we aimed to examine the enzymes that cleave complex carbohydrates (CAZymes) in the human microbiome in order to determine (i) whether the CAZyme profiles of bacterial genomes are more similar within body sites or bacterial families and (ii) the sugar degradation and utilization capabilities of microbial communities inhabiting various human habitats. Upon examination of 493 bacterial references genomes from 12 human habitats, we found that sugar degradation capabilities of taxa are more similar to others in the same bacterial family than to those inhabiting the same habitat. Yet, the analysis of 520 metagenomic samples from five major body sites show that even when the community composition varies the CAZyme profiles are very similar within a body site, suggesting that the observed functional profile and microbial habitation have adapted to the local carbohydrate composition. When broad sugar utilization was compared within the five major body sites, the gastrointestinal track contained the highest potential for total sugar degradation, while dextran and peptidoglycan degradation were highest in oral and vaginal sites respectively. Our analysis suggests that the carbohydrate composition of each body site has a profound influence and probably constitutes one of the major driving forces that shapes the community composition and therefore the CAZyme profile of the local microbial communities, which in turn reflects the microbiome fitness to a body site.


PLOS ONE | 2012

Analysis of the Gut Microbiota in the Old Order Amish and Its Relation to the Metabolic Syndrome

Margaret L. Zupancic; Brandi L. Cantarel; Zhenqiu Liu; Elliott F. Drabek; Kathleen A. Ryan; Shana Cirimotich; Cheron Jones; Rob Knight; William A. Walters; Dan Knights; Emmanuel F. Mongodin; Richard B. Horenstein; Braxton D. Mitchell; Nanette I. Steinle; Soren Snitker; Alan R. Shuldiner; Claire M. Fraser

Obesity has been linked to the human gut microbiota; however, the contribution of gut bacterial species to the obese phenotype remains controversial because of conflicting results from studies in different populations. To explore the possible dysbiosis of gut microbiota in obesity and its metabolic complications, we studied men and women over a range of body mass indices from the Old Order Amish sect, a culturally homogeneous Caucasian population of Central European ancestry. We characterized the gut microbiota in 310 subjects by deep pyrosequencing of bar-coded PCR amplicons from the V1–V3 region of the 16S rRNA gene. Three communities of interacting bacteria were identified in the gut microbiota, analogous to previously identified gut enterotypes. Neither BMI nor any metabolic syndrome trait was associated with a particular gut community. Network analysis identified twenty-two bacterial species and four OTUs that were either positively or inversely correlated with metabolic syndrome traits, suggesting that certain members of the gut microbiota may play a role in these metabolic derangements.


The ISME Journal | 2014

Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations

Torey Looft; Heather K. Allen; Brandi L. Cantarel; Uri Y. Levine; Darrell O. Bayles; David P. Alt; Bernard Henrissat; Thaddeus B. Stanton

Disturbance of the beneficial gut microbial community is a potential collateral effect of antibiotics, which have many uses in animal agriculture (disease treatment or prevention and feed efficiency improvement). Understanding antibiotic effects on bacterial communities at different intestinal locations is essential to realize the full benefits and consequences of in-feed antibiotics. In this study, we defined the lumenal and mucosal bacterial communities from the small intestine (ileum) and large intestine (cecum and colon) plus feces, and characterized the effects of in-feed antibiotics (chlortetracycline, sulfamethazine and penicillin (ASP250)) on these communities. 16S rRNA gene sequence and metagenomic analyses of bacterial membership and functions revealed dramatic differences between small and large intestinal locations, including enrichment of Firmicutes and phage-encoding genes in the ileum. The large intestinal microbiota encoded numerous genes to degrade plant cell wall components, and these genes were lacking in the ileum. The mucosa-associated ileal microbiota harbored greater bacterial diversity than the lumen but similar membership to the mucosa of the large intestine, suggesting that most gut microbes can associate with the mucosa and might serve as an inoculum for the lumen. The collateral effects on the microbiota of antibiotic-fed animals caused divergence from that of control animals, with notable changes being increases in Escherichia coli populations in the ileum, Lachnobacterium spp. in all gut locations, and resistance genes to antibiotics not administered. Characterizing the differential metabolic capacities and response to perturbation at distinct intestinal locations will inform strategies to improve gut health and food safety.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The convergence of carbohydrate active gene repertoires in human gut microbes

Catherine A. Lozupone; Micah Hamady; Brandi L. Cantarel; Pedro M. Coutinho; Bernard Henrissat; Jeffrey I. Gordon; Rob Knight

The extreme variation in gene content among phylogenetically related microorganisms suggests that gene acquisition, expansion, and loss are important evolutionary forces for adaptation to new environments. Accordingly, phylogenetically disparate organisms that share a habitat may converge in gene content as they adapt to confront shared challenges. This response should be especially pronounced for functional genes that are important for survival in a particular habitat. We illustrate this principle by showing that the repertoires of two different types of carbohydrate-active enzymes, glycoside hydrolases and glycosyltransferases, have converged in bacteria and archaea that live in the human gut and that this convergence is largely due to horizontal gene transfer rather than gene family expansion. We also identify gut microbes that may have more similar dietary niches in the human gut than would be expected based on phylogeny. The techniques used to obtain these results should be broadly applicable to understanding the functional genes and evolutionary processes important for adaptation in many environments and useful for interpreting the large number of reference microbial genome sequences being generated for the International Human Microbiome Project.

Collaboration


Dive into the Brandi L. Cantarel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey I. Gordon

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Rob Knight

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerlinde Obermoser

Baylor University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge