Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brendan Bingham is active.

Publication


Featured researches published by Brendan Bingham.


Molecular Pharmacology | 2010

Monoacylglycerol lipase activity is a critical modulator of the tone and integrity of the endocannabinoid system

Pranab K. Chanda; Ying Gao; Lilly Mark; Joan Btesh; Brian W. Strassle; Peimin Lu; Michael J. Piesla; Mei-Yi Zhang; Brendan Bingham; Albert J. Uveges; Dianne Kowal; David S. Garbe; Evguenia V. Kouranova; Robert H. Ring; Brian Bates; Menelas N. Pangalos; Jeffrey D. Kennedy; Garth T. Whiteside; Tarek A. Samad

Endocannabinoids are lipid molecules that serve as natural ligands for the cannabinoid receptors CB1 and CB2. They modulate a diverse set of physiological processes such as pain, cognition, appetite, and emotional states, and their levels and functions are tightly regulated by enzymatic biosynthesis and degradation. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid in the brain and is believed to be hydrolyzed primarily by the serine hydrolase monoacylglycerol lipase (MAGL). Although 2-AG binds and activates cannabinoid receptors in vitro, when administered in vivo, it induces only transient cannabimimetic effects as a result of its rapid catabolism. Here we show using a mouse model with a targeted disruption of the MAGL gene that MAGL is the major modulator of 2-AG hydrolysis in vivo. Mice lacking MAGL exhibit dramatically reduced 2-AG hydrolase activity and highly elevated 2-AG levels in the nervous system. A lack of MAGL activity and subsequent long-term elevation of 2-AG levels lead to desensitization of brain CB1 receptors with a significant reduction of cannabimimetic effects of CB1 agonists. Also consistent with CB1 desensitization, MAGL-deficient mice do not show alterations in neuropathic and inflammatory pain sensitivity. These findings provide the first genetic in vivo evidence that MAGL is the major regulator of 2-AG levels and signaling and reveal a pivotal role for 2-AG in modulating CB1 receptor sensitization and endocannabinoid tone.


Neurobiology of Disease | 2010

Depression-like phenotype following chronic CB1 receptor antagonism

Chad E. Beyer; Jason M. Dwyer; Michael J. Piesla; Brian Platt; Ru Shen; Zia Rahman; Karen Chan; Melissa T. Manners; Tarek A. Samad; Jeffrey D. Kennedy; Brendan Bingham; Garth T. Whiteside

Rimonabant was the first clinically marketed cannabinoid (CB)(1) receptor antagonist developed to treat obesity. Unfortunately, CB(1) receptor antagonism produced adverse psychiatric events in patients. To determine whether this occurs pre-clinically, we investigated the effects of rimonabant in rodent models of mood disorders. Chronic treatment with rimonabant increased immobility time in the rat forced swim test and reduced the consumption of sucrose-sweetened water in an assay postulated to model anhedonia. These responses were similar to the effects elicited by chronic mild stress in these behavioral models, which, taken together, are indicative of a depression-like phenotype. Additionally, chronic treatment with rimonabant produced decreases in frontal cortex serotonin levels, marked reductions in hippocampal cell proliferation, survival, and BDNF levels, and elevations in the concentrations of pro-inflammatory cytokines including interferon gamma and TNF alpha. These preclinical findings mimic clinical reports and implicate possible mechanisms responsible for the unfavorable psychiatric events reported following chronic rimonabant use.


PLOS ONE | 2011

Dynamic Changes in the MicroRNA Expression Profile Reveal Multiple Regulatory Mechanisms in the Spinal Nerve Ligation Model of Neuropathic Pain

David von Schack; Michael J. Agostino; B. Stuart Murray; Yizheng Li; Padmalatha S. Reddy; Jin An Chen; Sung E. Choe; Brian W. Strassle; Christine Li; Brian Bates; Lynn Zhang; Huijuan Hu; Smita Kotnis; Brendan Bingham; Wei Liu; Garth T. Whiteside; Tarek A. Samad; Jeffrey D. Kennedy; Seena K. Ajit

Neuropathic pain resulting from nerve lesions or dysfunction represents one of the most challenging neurological diseases to treat. A better understanding of the molecular mechanisms responsible for causing these maladaptive responses can help develop novel therapeutic strategies and biomarkers for neuropathic pain. We performed a miRNA expression profiling study of dorsal root ganglion (DRG) tissue from rats four weeks post spinal nerve ligation (SNL), a model of neuropathic pain. TaqMan low density arrays identified 63 miRNAs whose level of expression was significantly altered following SNL surgery. Of these, 59 were downregulated and the ipsilateral L4 DRG, not the injured L5 DRG, showed the most significant downregulation suggesting that miRNA changes in the uninjured afferents may underlie the development and maintenance of neuropathic pain. TargetScan was used to predict mRNA targets for these miRNAs and it was found that the transcripts with multiple predicted target sites belong to neurologically important pathways. By employing different bioinformatic approaches we identified neurite remodeling as a significantly regulated biological pathway, and some of these predictions were confirmed by siRNA knockdown for genes that regulate neurite growth in differentiated Neuro2A cells. In vitro validation for predicted target sites in the 3′-UTR of voltage-gated sodium channel Scn11a, alpha 2/delta1 subunit of voltage-dependent Ca-channel, and purinergic receptor P2rx ligand-gated ion channel 4 using luciferase reporter assays showed that identified miRNAs modulated gene expression significantly. Our results suggest the potential for miRNAs to play a direct role in neuropathic pain.


Brain Research | 2005

Ischemia-stimulated neurogenesis is regulated by proliferation, migration, differentiation and caspase activation of hippocampal precursor cells

Brendan Bingham; Danni Liu; Andrew Wood; Seongeun Cho

A brief ischemic injury to the gerbil forebrain that caused selective damage in the CA1 region of the hippocampus also enhanced the production of new cells in the hippocampal neurogenic area. When evaluated 1 week after bromodeoxyuridine (BrdU) injection, approximately ten times more labeled cells were detected in the hippocampal dentate gyrus in ischemic animals than controls, indicating a stimulation of mitotic activity. To assess the temporal course of the survival and fate of these newborn cells, we monitored BrdU labeling and cell marker expression up to 60 days after ischemia (DAI). Loss of BrdU-positive cells was observed from both control and ischemic animals, but at 30 DAI and afterward, the ischemic group maintained more than 3 times as many BrdU-positive cells as the control group. In addition, ischemic injury also fostered the neuronal differentiation of these cells beyond the capacity observed in control animals and facilitated the migration of developing neurons to a neuronal cellular layer. The establishment of a temporal correlation between differentiation and migration provides evidence of the functional maturation of these cells. Surprisingly, we found that ischemic injury induced activation of caspase-3, not only in the CA1 region as expected, but also in the dentate subgranular zone (SGZ). Active caspase-3 immunoreactivity in the subgranular layer was co-localized with an early neuronal marker, suggesting that caspase-mediated apoptosis could mediate the loss of neurogenic cells in the SGZ. Inhibiting caspase-3 in the context of ischemia-induced neurogenesis might provide an opportunity for functional repair and a therapeutic outcome in the wake of ischemic injury.


Nature Reviews Rheumatology | 2009

The molecular basis of pain and its clinical implications in rheumatology

Brendan Bingham; Seena K. Ajit; David R. Blake; Tarek A. Samad

Nociceptive pain in response to peripheral noxious stimuli, and inflammatory pain resulting from tissue damage, serve as warnings that normal bodily function cannot resume until the stimulus abates or the tissue repairs. Stimuli cause numerous receptors, ion channels and other cellular machinery to respond, and propagate signals to the central nervous system, where this information is processed and perceived as pain. In healthy individuals, tissue damage results in physiologic—generally reparative—changes that lead to heightened sensory perception and, often, pain. In rheumatic diseases, the joint pain bears much in common with chronic inflammatory pain, but the underlying disease state is typically much more intricate and no reparative function is evident. Addressing the complex pains of rheumatic disease remains an ongoing challenge. Pain signaling pathways involve many molecular components that could potentially be targets for pharmacotherapeutic intervention, but the complexity of this system might also mean that multiple sites must be affected simultaneously to disrupt propagation of pain signals. In addition, to be therapeutically viable, pain drugs must be safe and not alter tactile sensory function, alertness or cognitive function. In this article we review the molecular functions in nociceptive, inflammatory and rheumatic pain pathways, and the therapeutic options they might offer.


Cytometry Part A | 2006

Proapoptotic effects of NARC 1 (= PCSK9), the gene encoding a novel serine proteinase

Brendan Bingham; Ru Shen; Smita Kotnis; C. Frederick Lo; Bradley A. Ozenberger; Nivedita Ghosh; Jeffrey D. Kennedy; J. Steven Jacobsen; Jill M. Grenier; Peter S. DiStefano; Lillian W. Chiang; Andrew Wood

NARC 1/PCSK9 encodes a novel serine proteinase known to play a role in cholesterol homeostasis. NARC 1 mRNA expression in cerebellar granule neurons (CGNs) was discovered to be induced following an apoptotic injury. Coregulation of known apoptotic mediators (caspase‐3 and death receptor 6) raises the possibility that NARC 1 might be involved in the propagation of apoptotic signaling in neurons.


Molecular Pharmacology | 2010

Genetic and Functional Analysis of Human P2X5 Reveals a Distinct Pattern of Exon 10 Polymorphism with Predominant Expression of the Nonfunctional Receptor Isoform

Smita Kotnis; Brendan Bingham; Dmitry V. Vasilyev; Scott W. Miller; Yuchen Bai; Sarita Yeola; Pranab K. Chanda; Mark R. Bowlby; Edward J. Kaftan; Tarek A. Samad; Garth T. Whiteside

P2X5 is a member of the P2X family of ATP-gated nonselective cation channels, which exist as trimeric assemblies. P2X5 is believed to trimerize with another member of this family, P2X1. We investigated the single-nucleotide polymorphism (SNP) at the 3′ splice site of exon 10 of the human P2X5 gene. As reported previously, presence of a T at the SNP location results in inclusion of exon 10 in the mature transcript, whereas exon 10 is excluded when a G is present at this location. Our genotyping of human DNA samples reveals predominance of the G-bearing allele, which was exclusively present in DNA samples from white American, Middle Eastern, and Chinese donors. Samples from African American donors were polymorphic, with the G allele more frequent. Reverse transcription-polymerase chain reaction analysis of lymphocytes demonstrated a 100% positive correlation between genotype and P2X5 transcript. Immunostaining of P2X1/P2X5 stably coexpressing cell lines showed full-length P2X5 to be expressed at the cell surface and the exon 10-deleted isoform to be cytoplasmic. Fluorometric imaging-based pharmacological characterization indicated a ligand-dependent increase in intracellular calcium in 1321N1 astrocytoma cells transiently expressing full-length P2X5 but not the exon 10-deleted isoform. Likewise, electrophysiological analysis showed robust ATP-evoked currents when full-length but not the exon 10-deleted isoform of P2X5 was expressed. Taken together, our findings indicate that most humans express only a nonfunctional isoform of P2X5, which is in stark contrast to what is seen in other vertebrate species in which P2X5 has been studied, from which only the full-length isoform is known.


Cytometry Part A | 2006

Laser scanning cytometry in the characterization of the proapoptotic effects of transiently transfected genes in cerebellar granule neurons

Brendan Bingham; Smita Kotnis; Barbara McHendry-Rinde; Ru Shen; Andrew Wood; Jeffrey D. Kennedy

Low transient transfection efficiency limits the ability to characterize putative proapoptotic gene function in neurons. Laser scanning cytometry (LSC), with its high capacity, medium throughput means of collecting fluorescent emissions from cultured cells, offers an effective technology for scoring cell death in neuronal transfectants.


Archives of Biochemistry and Biophysics | 2003

Functional characterization of Narc 1, a novel proteinase related to proteinase K

Saule Naureckiene; Linh Ma; Kodangattil Sreekumar; Urmila Purandare; C. Frederick Lo; Ying Huang; Lillian W. Chiang; Jill M. Grenier; Bradley A. Ozenberger; J. Steven Jacobsen; Jeffrey D. Kennedy; Peter S. DiStefano; Andrew Wood; Brendan Bingham


Archive | 2002

NARC1, novel subtilase-like homologs

Brendan Bingham; Lillian W. Chiang; Lorayne P. Jenkins; Ching-Hsiung Frederick Lo; Saule Naureckiene; Bradley A. Ozenberger; Andrew Wood

Collaboration


Dive into the Brendan Bingham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lillian W. Chiang

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Ru Shen

Princeton University

View shared research outputs
Top Co-Authors

Avatar

Brian Bates

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge