Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bryce A. Nordhues is active.

Publication


Featured researches published by Bryce A. Nordhues.


The Journal of Neuroscience | 2013

Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation.

Jose F. Abisambra; Umesh K. Jinwal; Laura J. Blair; O'Leary Jc rd; Qingyou Li; Sarah Brady; Li Wang; Chantal Guidi; Bo Zhang; Bryce A. Nordhues; Matthew Cockman; Suntharalingham A; Pengfei Li; Ying Jin; Christopher Atkins; Chad A. Dickey

In Alzheimers disease (AD), the mechanisms of neuronal loss remain largely unknown. Although tau pathology is closely correlated with neuronal loss, how its accumulation may lead to activation of neurotoxic pathways is unclear. Here we show that tau increased the levels of ubiquitinated proteins in the brain and triggered activation of the unfolded protein response (UPR). This suggested that tau interferes with protein quality control in the endoplasmic reticulum (ER). Consistent with this, ubiquitin was found to associate with the ER in human AD brains and tau transgenic (rTg4510) mouse brains, but this was not always colocalized with tau. The increased levels of ubiquitinated protein were accompanied by increased levels of phosphorylated protein kinase R-like ER kinase (pPERK), a marker that indicates UPR activation. Depleting soluble tau levels in cells and brain could reverse UPR activation. Tau accumulation facilitated its deleterious interaction with ER membrane and associated proteins that are essential for ER-associated degradation (ERAD), including valosin-containing protein (VCP) and Hrd1. Based on this, the effects of tau accumulation on ERAD efficiency were evaluated using the CD3δ reporter, an ERAD substrate. Indeed, CD3δ accumulated in both in vitro and in vivo models of tau overexpression and AD brains. These data suggest that soluble tau impairs ERAD and the result is activation of the UPR. The reversibility of this process, however, suggests that tau-based therapeutics could significantly delay this type of cell death and therefore disease progression.


Journal of Clinical Investigation | 2013

Accelerated neurodegeneration through chaperone-mediated oligomerization of tau

Laura J. Blair; Bryce A. Nordhues; Shannon E. Hill; K. Matthew Scaglione; John C. O’Leary; Sarah N. Fontaine; Leonid Breydo; Bo Zhang; Pengfei Li; Li Wang; Carl W. Cotman; Henry L. Paulson; Martin Muschol; Vladimir N. Uversky; Torsten Klengel; Elisabeth B. Binder; Rakez Kayed; Todd E. Golde; Nicole C. Berchtold; Chad A. Dickey

Aggregation of tau protein in the brain is associated with a class of neurodegenerative diseases known as tauopathies. FK506 binding protein 51 kDa (FKBP51, encoded by FKBP5) forms a mature chaperone complex with Hsp90 that prevents tau degradation. In this study, we have shown that tau levels are reduced throughout the brains of Fkbp5-/- mice. Recombinant FKBP51 and Hsp90 synergized to block tau clearance through the proteasome, resulting in tau oligomerization. Overexpression of FKBP51 in a tau transgenic mouse model revealed that FKBP51 preserved the species of tau that have been linked to Alzheimers disease (AD) pathogenesis, blocked amyloid formation, and decreased tangle load in the brain. Alterations in tau turnover and aggregate structure corresponded with enhanced neurotoxicity in mice. In human brains, FKBP51 levels increased relative to age and AD, corresponding with demethylation of the regulatory regions in the FKBP5 gene. We also found that higher FKBP51 levels were associated with AD progression. Our data support a model in which age-associated increases in FKBP51 levels and its interaction with Hsp90 promote neurotoxic tau accumulation. Strategies aimed at attenuating FKBP51 levels or its interaction with Hsp90 have the potential to be therapeutically relevant for AD and other tauopathies.


The EMBO Journal | 2016

DnaJ/Hsc70 chaperone complexes control the extracellular release of neurodegenerative‐associated proteins

Sarah N. Fontaine; Dali Zheng; Jonathan J. Sabbagh; Mackenzie D. Martin; Dale Chaput; April L. Darling; Justin H. Trotter; Andrew R. Stothert; Bryce A. Nordhues; April L. Lussier; Jeremy D. Baker; Lindsey B. Shelton; Mahnoor Kahn; Laura J. Blair; Stanley M. Stevens; Chad A. Dickey

It is now known that proteins associated with neurodegenerative disease can spread throughout the brain in a prionlike manner. However, the mechanisms regulating the trans‐synaptic spread propagation, including the neuronal release of these proteins, remain unknown. The interaction of neurodegenerative disease‐associated proteins with the molecular chaperone Hsc70 is well known, and we hypothesized that much like disaggregation, refolding, degradation, and even normal function, Hsc70 may dictate the extracellular fate of these proteins. Here, we show that several proteins, including TDP‐43, α‐synuclein, and the microtubule‐associated protein tau, can be driven out of the cell by an Hsc70 co‐chaperone, DnaJC5. In fact, DnaJC5 overexpression induced tau release in cells, neurons, and brain tissue, but only when activity of the chaperone Hsc70 was intact and when tau was able to associate with this chaperone. Moreover, release of tau from neurons was reduced in mice lacking the DnaJC5 gene and when the complement of DnaJs in the cell was altered. These results demonstrate that the dynamics of DnaJ/Hsc70 complexes are critically involved in the release of neurodegenerative disease proteins.


Acta neuropathologica communications | 2015

Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy

Laura J. Blair; Haley D Frauen; Bo Zhang; Bryce A. Nordhues; Sara Bijan; Yen-Chi Lin; Frank Zamudio; Lidice D Hernandez; Jonathan J. Sabbagh; Maj-Linda B. Selenica; Chad A. Dickey

IntroductionThe blood-brain barrier (BBB) is damaged in tauopathies, including progressive supranuclear palsy (PSP) and Alzheimer’s disease (AD), which is thought to contribute to pathogenesis later in the disease course. In AD, BBB dysfunction has been associated with amyloid beta (Aß) pathology, but the role of tau in this process is not well characterized. Since increased BBB permeability is found in tauopathies without Aß pathology, like PSP, we suspected that tau accumulation alone could not only be sufficient, but even more important than Aß for BBB damage.ResultsLongitudinal evaluation of brain tissue from the tetracycline-regulatable rTg4510 tau transgenic mouse model showed progressive IgG, T cell and red blood cell infiltration. The Evans blue (EB) dye that is excluded from the brain when the BBB is intact also permeated the brains of rTg4510 mice following peripheral administration, indicative of a bonafide BBB defect, but this was only evident later in life. Thus, despite the marked brain atrophy and inflammation that occurs earlier in this model, BBB integrity is maintained. Interestingly, BBB dysfunction emerged at the same time that perivascular tau emerged around major hippocampal blood vessels. However, when tau expression was suppressed using doxycycline, BBB integrity was preserved, suggesting that the BBB can be stabilized in a tauopathic brain by reducing tau levels.ConclusionsFor the first time, these data demonstrate that tau alone can initiate breakdown of the BBB, but the BBB is remarkably resilient, maintaining its integrity in the face of marked brain atrophy, neuroinflammation and toxic tau accumulation. Moreover, the BBB can recover integrity when tau levels are reduced. Thus, late stage interventions targeting tau may slow the vascular contributions to cognitive impairment and dementia that occur in tauopathies.


PLOS ONE | 2014

Age-associated epigenetic upregulation of the FKBP5 gene selectively impairs stress resiliency.

Jonathan J. Sabbagh; John C. O'Leary; Laura J. Blair; Torsten Klengel; Bryce A. Nordhues; Sarah N. Fontaine; Elisabeth B. Binder; Chad A. Dickey

Single nucleotide polymorphisms (SNPs) in the FK506 binding protein 5 (FKBP5) gene combine with traumatic events to increase risk for post-traumatic stress and major depressive disorders (PTSD and MDD). These SNPs increase FKBP51 protein expression through a mechanism involving demethylation of the gene and altered glucocorticoid signaling. Aged animals also display elevated FKBP51 levels, which contribute to impaired resiliency to depressive-like behaviors through impaired glucocorticoid signaling, a phenotype that is abrogated in FKBP5−/− mice. But the age of onset and progressive stability of these phenotypes remain unknown. Moreover, it is unclear how FKBP5 deletion affects other glucocorticoid-dependent processes or if age-associated increases in FKBP51 expression are mediated through a similar epigenetic process caused by SNPs in the FKBP5 gene. Here, we show that FKBP51-mediated impairment in stress resiliency and glucocorticoid signaling occurs by 10 months of age and this increased over their lifespan. Surprisingly, despite these progressive changes in glucocorticoid responsiveness, FKBP5−/− mice displayed normal longevity, glucose tolerance, blood composition and cytokine profiles across lifespan, phenotypes normally associated with glucocorticoid signaling. We also found that methylation of Fkbp5 decreased with age in mice, a process that likely explains the age-associated increases in FKBP51 levels. Thus, epigenetic upregulation of FKBP51 with age can selectively impair psychological stress-resiliency, but does not affect other glucocorticoid-mediated physiological processes. This makes FKBP51 a unique and attractive therapeutic target to treat PTSD and MDD. In addition, aged wild-type mice may be a useful model for investigating the mechanisms of FKBP5 SNPs associated with these disorders.


Journal of Biological Chemistry | 2015

Isoform-selective Genetic Inhibition of Constitutive Cytosolic Hsp70 Activity Promotes Client Tau Degradation Using an Altered Co-chaperone Complement

Sarah N. Fontaine; Jennifer N. Rauch; Bryce A. Nordhues; Victoria A. Assimon; Andrew R. Stothert; Umesh K. Jinwal; Jonathan J. Sabbagh; Lyra Chang; Stanley M. Stevens; Erik R. P. Zuiderweg; Jason E. Gestwicki; Chad A. Dickey

Background: High levels of constitutive heat shock protein 70 (Hsc70) preserve Tau levels, possibly contributing to neuropathology. Results: A dominant negative Hsc70 (DN-Hsc70) variant mimics small-molecule inhibition and facilitates Tau clearance by altering the associated interactome. Conclusion: DN-Hsc70 recruits a pro-degradation chaperome complement to the Tau-Hsc70 complex. Significance: Selective Hsc70 inhibition could have a therapeutic benefit in tauopathies including Alzheimer disease. The constitutively expressed heat shock protein 70 kDa (Hsc70) is a major chaperone protein responsible for maintaining proteostasis, yet how its structure translates into functional decisions regarding client fate is still unclear. We previously showed that Hsc70 preserved aberrant Tau, but it remained unknown if selective inhibition of the activity of this Hsp70 isoform could facilitate Tau clearance. Using single point mutations in the nucleotide binding domain, we assessed the effect of several mutations on the functions of human Hsc70. Biochemical characterization revealed that one mutation abolished both Hsc70 ATPase and refolding activities. This variant resembled the ADP-bound conformer at all times yet remained able to interact with cofactors, nucleotides, and substrates appropriately, resembling a dominant negative Hsc70 (DN-Hsc70). We then assessed the effects of this DN-Hsc70 on its client Tau. DN-Hsc70 potently facilitated Tau clearance via the proteasome in cells and brain tissue, in contrast to wild type Hsc70 that stabilized Tau. Thus, DN-Hsc70 mimics the action of small molecule pan Hsp70 inhibitors with regard to Tau metabolism. This shift in Hsc70 function by a single point mutation was the result of a change in the chaperome associated with Hsc70 such that DN-Hsc70 associated more with Hsp90 and DnaJ proteins, whereas wild type Hsc70 was more associated with other Hsp70 isoforms. Thus, isoform-selective targeting of Hsc70 could be a viable therapeutic strategy for tauopathies and possibly lead to new insights in chaperone complex biology.


Journal of Neuroinflammation | 2014

Epitope analysis following active immunization with tau proteins reveals immunogens implicated in tau pathogenesis

Maj Linda B. Selenica; Hayk Davtyan; Steven B. Housley; Laura J. Blair; Anne T. Gillies; Bryce A. Nordhues; Bo Zhang; Joseph Liu; Jason E. Gestwicki; Daniel C. Lee; Marcia N. Gordon; Dave Morgan; Chad A. Dickey

BackgroundAbnormal tau hyperphosphorylation and its accumulation into intra-neuronal neurofibrillary tangles are linked to neurodegeneration in Alzheimer’s disease and similar tauopathies. One strategy to reduce accumulation is through immunization, but the most immunogenic tau epitopes have so far remained unknown. To fill this gap, we immunized mice with recombinant tau to build a map of the most immunogenic tau epitopes.MethodsNon-transgenic and rTg4510 tau transgenic mice aged 5 months were immunized with either human wild-type tau (Wt, 4R0N) or P301L tau (4R0N). Each protein was formulated in Quil A adjuvant. Sera and splenocytes of vaccinated mice were collected to assess the humoral and cellular immune responses to tau. We employed a peptide array assay to identify the most effective epitopes. Brain histology was utilized to measure the effects of vaccination on tau pathology and inflammation.ResultsHumoral immune responses following immunization demonstrated robust antibody titers (up to 1:80,000 endpoint titers) to each tau species in both mice models. The number of IFN-γ producing T cells and their proliferation were also increased in splenocytes from immunized mice, indicating an increased cellular immune response, and tau levels and neuroinflammation were both reduced. We identified five immunogenic motifs within either the N-terminal (9-15 and 21-27 amino acids), proline rich (168-174 and 220-228 amino acids), or the C-terminal regions (427-438 amino acids) of the wild-type and P301L tau protein sequence.ConclusionsOur study identifies five previously unknown immunogenic motifs of wild-type and mutated (P301L) tau protein. Immunization with both proteins resulted in reduced tau pathology and neuroinflammation in a tau transgenic model, supporting the efficacy of tau immunotherapy in tauopathy.


Human Molecular Genetics | 2015

The active Hsc70/tau complex can be exploited to enhance tau turnover without damaging microtubule dynamics

Sarah N. Fontaine; Mackenzie D. Martin; Elias Akoury; Victoria A. Assimon; Sergiy I. Borysov; Bryce A. Nordhues; Jonathan J. Sabbagh; Matt Cockman; Jason E. Gestwicki; Markus Zweckstetter; Chad A. Dickey

The pathological accumulation of abnormally hyperphosphorylated and aggregated tau, a neuronal microtubule (MT)-associated protein that functions to maintain MT stability, is implicated in a number of hereditary and sporadic neurodegenerative diseases including frontotemporal dementia and Alzheimers disease. Targeting tau for the treatment of these diseases is an area of intense interest and toward that end, modulation of cellular molecular chaperones is a potential therapeutic target. In particular, the constitutive Hsp70 isoform, Hsc70, seems highly interconnected with tau, preserving tau protein levels and synergizing with it to assemble MTs. But the relationship between tau and Hsc70, as well as the impact of this interaction in neurons and its therapeutic implications remain unknown. Using a human dominant negative Hsc70 that resembles isoform selective inhibition of this important chaperone, we found for the first time that Hsc70 activity is required to stimulate MT assembly in cells and brain. However, surprisingly, active Hsc70 also requires active tau to regulate MT assembly in vivo, suggesting that tau acts in some ways as a co-chaperone for Hsc70 to coordinate MT assembly. This was despite tau binding to Hsc70 as substrate, as determined biochemically. Moreover, we show that while chronic Hsc70 inhibition damaged MT dynamics, intermittent treatment with a small molecule Hsp70 inhibitor lowered tau in brain tissue without disrupting MT integrity. Thus, in tauopathies, where MT injury would be detrimental to neurons, the unique relationship of tau with the Hsc70 machinery can be exploited to deplete tau levels without damaging MT networks.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Hsp90 activator Aha1 drives production of pathological tau aggregates

Lindsey B. Shelton; Jeremy D. Baker; Dali Zheng; Leia E. Sullivan; Parth K. Solanki; Jack M. Webster; Zheying Sun; Jonathan J. Sabbagh; Bryce A. Nordhues; John Koren; Suman Ghosh; Brian S. J. Blagg; Laura J. Blair; Chad A. Dickey

Significance The accumulation of toxic tau protein, as in Alzheimer’s disease, is regulated by the 90-kDa heat shock protein (Hsp90) chaperone system. Inhibition of Hsp90 has been shown to reduce tau levels. However, Hsp90 inhibition can be problematic due to a lack of blood–brain barrier permeability and established toxicities. Here, we demonstrate that the Hsp90 cochaperone, ATPase homolog 1 (Aha1), dramatically increases the production of aggregated tau in vitro and in a mouse model of neurodegenerative disease. Moreover, inhibition of Aha1 reduced tau accumulation in cultured cells. These data identify Aha1 as a target for the treatment of tauopathies. The microtubule-associated protein tau (MAPT, tau) forms neurotoxic aggregates that promote cognitive deficits in tauopathies, the most common of which is Alzheimer’s disease (AD). The 90-kDa heat shock protein (Hsp90) chaperone system affects the accumulation of these toxic tau species, which can be modulated with Hsp90 inhibitors. However, many Hsp90 inhibitors are not blood–brain barrier-permeable, and several present associated toxicities. Here, we find that the cochaperone, activator of Hsp90 ATPase homolog 1 (Aha1), dramatically increased the production of aggregated tau. Treatment with an Aha1 inhibitor, KU-177, dramatically reduced the accumulation of insoluble tau. Aha1 colocalized with tau pathology in human brain tissue, and this association positively correlated with AD progression. Aha1 overexpression in the rTg4510 tau transgenic mouse model promoted insoluble and oligomeric tau accumulation leading to a physiological deficit in cognitive function. Overall, these data demonstrate that Aha1 contributes to tau fibril formation and neurotoxicity through Hsp90. This suggests that therapeutics targeting Aha1 may reduce toxic tau oligomers and slow or prevent neurodegenerative disease progression.


Analytical Chemistry | 2016

Protein Cross-Linking Capillary Electrophoresis for Protein–Protein Interaction Analysis

Claire M. Ouimet; Hao Shao; Jennifer N. Rauch; Mohamed Dawod; Bryce A. Nordhues; Chad A. Dickey; Jason E. Gestwicki; Robert T. Kennedy

Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs.

Collaboration


Dive into the Bryce A. Nordhues's collaboration.

Top Co-Authors

Avatar

Chad A. Dickey

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Laura J. Blair

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Zhang

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pengfei Li

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Dali Zheng

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Jeremy D. Baker

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Sarah N. Fontaine

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge