Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura J. Blair is active.

Publication


Featured researches published by Laura J. Blair.


Journal of Neuroinflammation | 2010

LPS- induced inflammation exacerbates phospho-tau pathology in rTg4510 mice

Daniel C. Lee; Justin Rizer; Maj Linda B. Selenica; Patrick Reid; Clara Kraft; Amelia G. Johnson; Laura J. Blair; Marcia N. Gordon; Chad A. Dickey; Dave Morgan

Inflammation and microglial activation are associated with Alzheimers disease (AD) pathology. Somewhat surprisingly, injection of a prototypical inflammatory agent, lipopolysaccharide (LPS) into brains of amyloid precursor protein (APP) transgenic mice clears some of the pre-existing amyloid deposits. It is less well understood how brain inflammation modulates tau pathology in the absence of Aβ. These studies examined the role of LPS-induced inflammation on tau pathology. We used transgenic rTg4510 mice, which express the P301L mutation (4R0N TauP301L) and initiate tau pathology between 3-5 months of age. First, we found an age-dependent increase in several markers of microglial activation as these rTg4510 mice aged and tau tangles accumulated. LPS injections into the frontal cortex and hippocampus induced significant activation of CD45 and arginase 1 in rTg4510 and non-transgenic mice. In addition, activation of YM1 by LPS was exaggerated in transgenic mice relative to non-transgenic animals. Expression of Ser199/202 and phospho-tau Ser396 was increased in rTg4510 mice that received LPS compared to vehicle injections. However, the numbers of silver-positive neurons, implying presence of more pre- and mature tangles, was not significantly affected by LPS administration. These data suggest that inflammatory stimuli can facilitate tau phosphorylation. Coupled with prior results demonstrating clearance of Aβ by similar LPS injections, these results suggest that brain inflammation may have opposing effects on amyloid and tau pathology, possibly explaining the failures (to date) of anti-inflammatory therapies in AD patients.


The Journal of Neuroscience | 2010

The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules.

Umesh K. Jinwal; John Koren; Sergiy I. Borysov; Andreas B. Schmid; Jose F. Abisambra; Laura J. Blair; Amelia G. Johnson; Jeffrey R. Jones; Cody L. Shults; John C. O'Leary; Ying Jin; Johannes Buchner; Marc B. Cox; Chad A. Dickey

Imbalanced protein load within cells is a critical aspect for most diseases of aging. In particular, the accumulation of proteins into neurotoxic aggregates is a common thread for a host of neurodegenerative diseases. Our previous work demonstrated that age-related changes to the cellular chaperone repertoire contributes to abnormal buildup of the microtubule-associated protein tau that accumulates in a group of diseases termed tauopathies, the most common being Alzheimers disease. Here, we show that the Hsp90 cochaperone, FK506-binding protein 51 (FKBP51), which possesses both an Hsp90-interacting tetratricopeptide domain and a peptidyl-prolyl cis-trans isomerase (PPIase) domain, prevents tau clearance and regulates its phosphorylation status. Regulation of the latter is dependent on the PPIase activity of FKBP51. FKB51 enhances the association of tau with Hsp90, but the FKBP51/tau interaction is not dependent on Hsp90. In vitro FKBP51 stabilizes microtubules with tau in a reaction depending on the PPIase activity of FKBP51. Based on these new findings, we propose that FKBP51 can use the Hsp90 complex to isomerize tau, altering its phosphorylation pattern and stabilizing microtubules.


The Journal of Neuroscience | 2013

Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation.

Jose F. Abisambra; Umesh K. Jinwal; Laura J. Blair; O'Leary Jc rd; Qingyou Li; Sarah Brady; Li Wang; Chantal Guidi; Bo Zhang; Bryce A. Nordhues; Matthew Cockman; Suntharalingham A; Pengfei Li; Ying Jin; Christopher Atkins; Chad A. Dickey

In Alzheimers disease (AD), the mechanisms of neuronal loss remain largely unknown. Although tau pathology is closely correlated with neuronal loss, how its accumulation may lead to activation of neurotoxic pathways is unclear. Here we show that tau increased the levels of ubiquitinated proteins in the brain and triggered activation of the unfolded protein response (UPR). This suggested that tau interferes with protein quality control in the endoplasmic reticulum (ER). Consistent with this, ubiquitin was found to associate with the ER in human AD brains and tau transgenic (rTg4510) mouse brains, but this was not always colocalized with tau. The increased levels of ubiquitinated protein were accompanied by increased levels of phosphorylated protein kinase R-like ER kinase (pPERK), a marker that indicates UPR activation. Depleting soluble tau levels in cells and brain could reverse UPR activation. Tau accumulation facilitated its deleterious interaction with ER membrane and associated proteins that are essential for ER-associated degradation (ERAD), including valosin-containing protein (VCP) and Hrd1. Based on this, the effects of tau accumulation on ERAD efficiency were evaluated using the CD3δ reporter, an ERAD substrate. Indeed, CD3δ accumulated in both in vitro and in vivo models of tau overexpression and AD brains. These data suggest that soluble tau impairs ERAD and the result is activation of the UPR. The reversibility of this process, however, suggests that tau-based therapeutics could significantly delay this type of cell death and therefore disease progression.


Journal of Clinical Investigation | 2013

Accelerated neurodegeneration through chaperone-mediated oligomerization of tau

Laura J. Blair; Bryce A. Nordhues; Shannon E. Hill; K. Matthew Scaglione; John C. O’Leary; Sarah N. Fontaine; Leonid Breydo; Bo Zhang; Pengfei Li; Li Wang; Carl W. Cotman; Henry L. Paulson; Martin Muschol; Vladimir N. Uversky; Torsten Klengel; Elisabeth B. Binder; Rakez Kayed; Todd E. Golde; Nicole C. Berchtold; Chad A. Dickey

Aggregation of tau protein in the brain is associated with a class of neurodegenerative diseases known as tauopathies. FK506 binding protein 51 kDa (FKBP51, encoded by FKBP5) forms a mature chaperone complex with Hsp90 that prevents tau degradation. In this study, we have shown that tau levels are reduced throughout the brains of Fkbp5-/- mice. Recombinant FKBP51 and Hsp90 synergized to block tau clearance through the proteasome, resulting in tau oligomerization. Overexpression of FKBP51 in a tau transgenic mouse model revealed that FKBP51 preserved the species of tau that have been linked to Alzheimers disease (AD) pathogenesis, blocked amyloid formation, and decreased tangle load in the brain. Alterations in tau turnover and aggregate structure corresponded with enhanced neurotoxicity in mice. In human brains, FKBP51 levels increased relative to age and AD, corresponding with demethylation of the regulatory regions in the FKBP5 gene. We also found that higher FKBP51 levels were associated with AD progression. Our data support a model in which age-associated increases in FKBP51 levels and its interaction with Hsp90 promote neurotoxic tau accumulation. Strategies aimed at attenuating FKBP51 levels or its interaction with Hsp90 have the potential to be therapeutically relevant for AD and other tauopathies.


Journal of Biological Chemistry | 2010

Facilitating Akt Clearance via Manipulation of Hsp70 Activity and Levels

John Koren; Umesh K. Jinwal; Ying Jin; John C. O'Leary; Jeffrey R. Jones; Amelia G. Johnson; Laura J. Blair; Jose F. Abisambra; Lyra Chang; Yoshinari Miyata; Anna M. Cheng; Jianping Guo; Jin Q. Cheng; Jason E. Gestwicki; Chad A. Dickey

Members of the 70-kDa heat shock family can control and manipulate a host of oncogenic client proteins. This role of Hsp70 in both the folding and degradation of these client proteins makes it a potential drug target for certain forms of cancer. The phenothiazine family of compounds, as well as the flavonoid myricetin, was recently shown to inhibit Hsp70-ATPase activity, whereas members of the dihydropyrimidine family stimulated ATPase function. Akt, a major survival kinase, was found to be under the regulation of Hsp70, and when the ATPase activity of Hsp70 was increased or decreased by these compounds, Akt levels were also increased or decreased. Also, increasing Hsp70 levels concurrent with inhibition of its ATPase function synergistically reduced Akt levels to a greater extent than either manipulation alone, providing new insights about client fate decisions. Akt reductions mediated by Hsp70 inhibitors were prevented when Hsp70 expression was silenced with small interfering RNA. Inhibiting Hsp70 ATPase function produced cytotoxic events only in breast cancer cell lines where Akt dysfunction was previously shown, suggesting therapeutic specificity depending on the Hsp70 client profile. Thus, increasing Hsp70 levels combined with inhibiting its ATPase function may serve to dramatically reduce Akt levels and facilitate cell death in certain types of cancer.


Journal of Biological Chemistry | 2010

Hsc70 Rapidly Engages Tau after Microtubule Destabilization

Umesh K. Jinwal; John C. O'Leary; Sergiy I. Borysov; Jeffrey R. Jones; Qingyou Li; John Koren; Jose F. Abisambra; Grant D. Vestal; Lisa Y. Lawson; Amelia G. Johnson; Laura J. Blair; Ying Jin; Yoshinari Miyata; Jason E. Gestwicki; Chad A. Dickey

The microtubule-associated protein Tau plays a crucial role in regulating the dynamic stability of microtubules during neuronal development and synaptic transmission. In a group of neurodegenerative diseases, such as Alzheimer disease and other tauopathies, conformational changes in Tau are associated with the initial stages of disease pathology. Folding of Tau into the MC1 conformation, where the amino acids at residues 7–9 interact with residues 312–342, is one of the earliest pathological alterations of Tau in Alzheimer disease. The mechanism of this conformational change in Tau and the subsequent effect on function and association to microtubules is largely unknown. Recent work by our group and others suggests that members of the Hsp70 family play a significant role in Tau regulation. Our new findings suggest that heat shock cognate (Hsc) 70 facilitates Tau-mediated microtubule polymerization. The association of Hsc70 with Tau was rapidly enhanced following treatment with microtubule-destabilizing agents. The fate of Tau released from the microtubule was found to be dependent on ATPase activity of Hsc70. Microtubule destabilization also rapidly increased the MC1 folded conformation of Tau. An in vitro assay suggests that Hsc70 facilitates formation of MC1 Tau. However, in a hyperphosphorylating environment, the formation of MC1 was abrogated, but Hsc70 binding to Tau was enhanced. Thus, under normal circumstances, MC1 formation may be a protective conformation facilitated by Hsc70. However, in a diseased environment, Hsc70 may preserve Tau in a more unstructured state, perhaps facilitating its pathogenicity.


The Journal of Neuroscience | 2010

Phosphorylation Dynamics Regulate Hsp27-Mediated Rescue of Neuronal Plasticity Deficits in Tau Transgenic Mice

Jose F. Abisambra; Laura J. Blair; Shannon E. Hill; Jeffrey R. Jones; Clara Kraft; Justin T. Rogers; John Koren; Umesh K. Jinwal; Lisa Y. Lawson; Amelia G. Johnson; Donna M. Wilcock; John C. O'Leary; Karen Jansen-West; Martin Muschol; Todd E. Golde; Edwin J. Weeber; Jessica L. Banko; Chad A. Dickey

Molecular chaperones regulate the aggregation of a number of proteins that pathologically misfold and accumulate in neurodegenerative diseases. Identifying ways to manipulate these proteins in disease models is an area of intense investigation; however, the translation of these results to the mammalian brain has progressed more slowly. In this study, we investigated the ability of one of these chaperones, heat shock protein 27 (Hsp27), to modulate tau dynamics. Recombinant wild-type Hsp27 and a genetically altered version of Hsp27 that is perpetually pseudo-phosphorylated (3×S/D) were generated. Both Hsp27 variants interacted with tau, and atomic force microscopy and dynamic light scattering showed that both variants also prevented tau filament formation. However, extrinsic genetic delivery of these two Hsp27 variants to tau transgenic mice using adeno-associated viral particles showed that wild-type Hsp27 reduced neuronal tau levels, whereas 3×S/D Hsp27 was associated with increased tau levels. Moreover, rapid decay in hippocampal long-term potentiation (LTP) intrinsic to this tau transgenic model was rescued by wild-type Hsp27 overexpression but not by 3×S/D Hsp27. Because the 3×S/D Hsp27 mutant cannot cycle between phosphorylated and dephosphorylated states, we can conclude that Hsp27 must be functionally dynamic to facilitate tau clearance from the brain and rescue LTP; however, when this property is compromised, Hsp27 may actually facilitate accumulation of soluble tau intermediates.


Biological Psychiatry | 2013

Allosteric heat shock protein 70 inhibitors rapidly rescue synaptic plasticity deficits by reducing aberrant tau.

Jose F. Abisambra; Umesh K. Jinwal; Yoshinari Miyata; Justin T. Rogers; Laura J. Blair; Xiaokai Li; Sandlin P. Seguin; Li Wang; Ying Jin; Justin Bacon; Sarah Brady; Matthew Cockman; Chantal Guidi; Juan Zhang; John Koren; Zapporah T. Young; Christopher Atkins; Bo Zhang; Lisa Y. Lawson; Edwin J. Weeber; Jeffrey L. Brodsky; Jason E. Gestwicki; Chad A. Dickey

BACKGROUND The microtubule-associated protein tau accumulates in neurodegenerative diseases known as tauopathies, the most common being Alzheimers disease. One way to treat these disorders may be to reduce abnormal tau levels through chaperone manipulation, thus subverting synaptic plasticity defects caused by taus toxic accretion. METHODS Tauopathy models were used to study the impact of YM-01 on tau. YM-01 is an allosteric promoter of triage functions of the most abundant variant of the heat shock protein 70 (Hsp70) family in the brain, heat shock cognate 70 protein (Hsc70). The mechanisms by which YM-01 modified Hsc70 activity and tau stability were evaluated with biochemical methods, cell cultures, and primary neuronal cultures from tau transgenic mice. YM-01 was also administered to acute brain slices of tau mice; changes in tau stability and electrophysiological correlates of learning and memory were measured. RESULTS Tau levels were rapidly and potently reduced in vitro and ex vivo upon treatment with nanomolar concentrations of YM-01. Consistent with Hsc70 having a key role in this process, overexpression of heat shock protein 40 (DNAJB2), an Hsp70 co-chaperone, suppressed YM-01 activity. In contrast to its effects in pathogenic tauopathy models, YM-01 had little activity in ex vivo brain slices from normal, wild-type mice unless microtubules were disrupted, suggesting that Hsc70 acts preferentially on abnormal pools of free tau. Finally, treatment with YM-01 increased long-term potentiation in tau transgenic brain slices. CONCLUSIONS Therapeutics that exploit the ability of chaperones to selectively target abnormal tau can rapidly and potently rescue the synaptic dysfunction that occurs in Alzheimers disease and other tauopathies.


PLOS ONE | 2011

A New Anti-Depressive Strategy for the Elderly: Ablation of FKBP5/FKBP51

John C. O'Leary; Sheetal Dharia; Laura J. Blair; Sarah Brady; Amelia G. Johnson; Melinda M. Peters; Joyce Cheung-Flynn; Marc B. Cox; Gabriel A. de Erausquin; Edwin J. Weeber; Umesh K. Jinwal; Chad A. Dickey

The gene FKBP5 codes for FKBP51, a co-chaperone protein of the Hsp90 complex that increases with age. Through its association with Hsp90, FKBP51 regulates the glucocorticoid receptor (GR). Single nucleotide polymorphisms (SNPs) in the FKBP5 gene associate with increased recurrence of depressive episodes, increased susceptibility to post-traumatic stress disorder, bipolar disorder, attempt of suicide, and major depressive disorder in HIV patients. Variation in one of these SNPs correlates with increased levels of FKBP51. FKBP51 is also increased in HIV patients. Moreover, increases in FKBP51 in the amygdala produce an anxiety phenotype in mice. Therefore, we tested the behavioral consequences of FKBP5 deletion in aged mice. Similar to that of naïve animals treated with classical antidepressants FKBP5−/− mice showed antidepressant behavior without affecting cognition and other basic motor functions. Reduced corticosterone levels following stress accompanied these observed effects on depression. Age-dependent anxiety was also modulated by FKBP5 deletion. Therefore, drug discovery efforts focused on depleting FKBP51 levels may yield novel antidepressant therapies.


The EMBO Journal | 2016

DnaJ/Hsc70 chaperone complexes control the extracellular release of neurodegenerative‐associated proteins

Sarah N. Fontaine; Dali Zheng; Jonathan J. Sabbagh; Mackenzie D. Martin; Dale Chaput; April L. Darling; Justin H. Trotter; Andrew R. Stothert; Bryce A. Nordhues; April L. Lussier; Jeremy D. Baker; Lindsey B. Shelton; Mahnoor Kahn; Laura J. Blair; Stanley M. Stevens; Chad A. Dickey

It is now known that proteins associated with neurodegenerative disease can spread throughout the brain in a prionlike manner. However, the mechanisms regulating the trans‐synaptic spread propagation, including the neuronal release of these proteins, remain unknown. The interaction of neurodegenerative disease‐associated proteins with the molecular chaperone Hsc70 is well known, and we hypothesized that much like disaggregation, refolding, degradation, and even normal function, Hsc70 may dictate the extracellular fate of these proteins. Here, we show that several proteins, including TDP‐43, α‐synuclein, and the microtubule‐associated protein tau, can be driven out of the cell by an Hsc70 co‐chaperone, DnaJC5. In fact, DnaJC5 overexpression induced tau release in cells, neurons, and brain tissue, but only when activity of the chaperone Hsc70 was intact and when tau was able to associate with this chaperone. Moreover, release of tau from neurons was reduced in mice lacking the DnaJC5 gene and when the complement of DnaJs in the cell was altered. These results demonstrate that the dynamics of DnaJ/Hsc70 complexes are critically involved in the release of neurodegenerative disease proteins.

Collaboration


Dive into the Laura J. Blair's collaboration.

Top Co-Authors

Avatar

Chad A. Dickey

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

John Koren

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Umesh K. Jinwal

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

John C. O'Leary

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Zhang

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Bryce A. Nordhues

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Jeremy D. Baker

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Lindsey B. Shelton

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge