C Eckert
Charité
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C Eckert.
Leukemia | 2006
Claus Meyer; Björn Schneider; S Jakob; Sabine Strehl; Andishe Attarbaschi; Susanne Schnittger; Claudia Schoch; M W J C Jansen; J J M van Dongen; M L den Boer; R Pieters; M-G Ennas; E Angelucci; U Koehl; Johann Greil; Frank Griesinger; U zur Stadt; C Eckert; T Szczepa nacute; ski; Felix Niggli; Beat W. Schäfer; H Kempski; Hjm Brady; Jan Zuna; J Trka; Luca Lo Nigro; Andrea Biondi; Eric Delabesse; E Macintyre
Chromosomal rearrangements of the human MLL gene are a hallmark for aggressive (high-risk) pediatric, adult and therapy-associated acute leukemias. These patients need to be identified in order to subject these patients to appropriate therapy regimen. A recently developed long-distance inverse PCR method was applied to genomic DNA isolated from individual acute leukemia patients in order to identify chromosomal rearrangements of the human MLL gene. We present data of the molecular characterization of 414 samples obtained from 272 pediatric and 142 adult leukemia patients. The precise localization of genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) was determined and several new TPGs were identified. The combined data of our study and published data revealed a total of 87 different MLL rearrangements of which 51 TPGs are now characterized at the molecular level. Interestingly, the four most frequently found TPGs (AF4, AF9, ENL and AF10) encode nuclear proteins that are part of a protein network involved in histone H3K79 methylation. Thus, translocations of the MLL gene, by itself coding for a histone H3K4 methyltransferase, are presumably not randomly chosen, rather functionally selected.
Blood | 2011
van, Delft, Fw; Sharon W. Horsley; Susan M. Colman; Kristina Anderson; Caroline M. Bateman; Helena Kempski; Jan Zuna; C Eckert; Saha; Lyndal Kearney; Anthony M. Ford; Mel Greaves
B-cell precursor childhood acute lymphoblastic leukemia with ETV6-RUNX1 (TEL-AML1) fusion has an overall good prognosis, but relapses occur, usually after cessation of treatment and occasionally many years later. We have investigated the clonal origins of relapse by comparing the profiles of genomewide copy number alterations at presentation in 21 patients with those in matched relapse (12-119 months). We identified, in total, 159 copy number alterations at presentation and 231 at relapse (excluding Ig/TCR). Deletions of CDKN2A/B or CCNC (6q16.2-3) or both increased from 38% at presentation to 76% in relapse, suggesting that cell-cycle deregulation contributed to emergence of relapse. A novel observation was recurrent gain of chromosome 16 (2 patients at presentation, 4 at relapse) and deletion of plasmocytoma variant translocation 1 in 3 patients. The data indicate that, irrespective of time to relapse, the relapse clone was derived from either a major or minor clone at presentation. Backtracking analysis by FISH identified a minor subclone at diagnosis whose genotype matched that observed in relapse ∼ 10 years later. These data indicate subclonal diversity at diagnosis, providing a variable basis for intraclonal origins of relapse and extended periods (years) of dormancy, possibly by quiescence, for stem cells in ETV6-RUNX1(+) acute lymphoblastic leukemia.
Leukemia | 2013
S Krentz; Jana Hof; A. Mendioroz; R. Vaggopoulou; Petra Dörge; Claudio Lottaz; Julia C. Engelmann; T. W. L. Groeneveld; K Seeger; Christian Hagemeier; Günter Henze; C Eckert; A von Stackelberg; Renate Kirschner-Schwabe
Despite risk-adapted treatment, survival of children with relapse of acute lymphoblastic leukemia (ALL) remains poor compared with that of patients with initial diagnosis of ALL. Leukemia-associated genetic alterations may provide novel prognostic factors to refine present relapse treatment strategies. Therefore, we investigated the clinical relevance of 13 recurrent genetic alterations in 204 children treated uniformly for relapsed B-cell precursor ALL according to the ALL-REZ BFM 2002 protocol. The most common alterations were deletions of CDKN2A/2B, IKZF1, PAX5, ETV6, fusion of ETV6-RUNX1 and deletions and/or mutations of TP53. Multivariate analysis identified IKZF1 deletion and TP53 alteration as independent predictors of inferior outcome (P=0.002 and P=0.001). Next, we investigated how both alterations can improve the established risk stratification in relapsed ALL. Intermediate-risk relapse patients with low minimal residual disease are currently considered to have a good prognosis. In this group, deletion of IKZF1 and alteration of TP53 identify patients with significantly inferior outcome (P<0.001). In high-risk relapse patients, deletion of IKZF1 is strongly predictive of a second relapse after stem cell transplantation (P<0.001). We conclude that IKZF1 and TP53 represent relevant prognostic factors that should be considered in future risk assessment of children with relapsed ALL to indicate treatment intensification or intervention.
Leukemia | 2014
Marketa Zaliova; O Zimmermannova; Petra Dörge; C Eckert; Anja Möricke; Martin Zimmermann; J Stuchly; Andrea Teigler-Schlegel; B Meissner; Rolf Koehler; Claus R. Bartram; Leonid Karawajew; P Rhein; Jan Zuna; M Schrappe; Gunnar Cario; Martin Stanulla
ERG deletion is associated with CD2 and attenuates the negative impact of IKZF1 deletion in childhood acute lymphoblastic leukemia
Clinical Cancer Research | 2005
E. Renate Panzer-Grümayer; Giovanni Cazzaniga; V H J van der Velden; Laura del Giudice; Martina Peham; Georg Mann; C Eckert; André Schrauder; Giuseppe Germano; Jochen Harbott; Giuseppe Basso; Andrea Biondi; Jacques J.M. van Dongen; Helmut Gadner; Oskar A. Haas
Purpose: Variations of the immunogenotype and TEL deletions in children with TEL-AML1+ acute lymphoblastic leukemia support the hypothesis that relapses derive from a persistent TEL-AML1+ preleukemic/leukemic clone rather than a resistant leukemia. We aimed at elucidating the relationship between the immunogenotype patterns at diagnosis and relapse as well as their clinical and biological relevance. Patients and Methods: Immunoglobulin and T-cell receptor gene rearrangements were analyzed in 41 children with a TEL-AML1+ acute lymphoblastic leukemia and an early (up to 30 months after diagnosis; n = 12) or late (at 30 months or later; n = 29) disease recurrence by a standardized PCR approach. Results: In 68% of the patients (group I), we identified differences in the immunogenotype patterns, whereas no changes were observed in the remaining 32% (group II). The divergence resulted more often from clonal selection than clonal evolution and consisted predominantly of losses (0-6, median 5) and/or gains (0-4, median 1) of rearrangements. The frequency and number of clonal immunoglobulin/T-cell receptor rearrangements in group I was higher at diagnosis (2-13, median 5) than at relapse (2-7, median 4), whereas it was the lowest in group II (1-5, median 3). Although group I children were younger at diagnosis, there was no correlation between particular immunogenotype patterns and remission duration. Conclusion: These findings imply that the clonal heterogeneity in younger children most likely reflects an ongoing high recombinatorial activity in the preleukemic/leukemic cells, whereas the more uniform repertoire observed in older children mirrors end-stage rearrangement patterns of selected cell clones that evolved during the prolonged latency period.
Blood | 2012
Maria Morak; Andishe Attarbaschi; Susanna Fischer; Christine Nassimbeni; Reinhard Grausenburger; Stephan Bastelberger; Stefanie Krentz; Gunnar Cario; David C. Kasper; Klaus Schmitt; Lisa J. Russell; Ulrike Pötschger; Martin Stanulla; C Eckert; Georg Mann; Oskar A. Haas; Renate Panzer-Grümayer
The P2RY8-CRLF2 fusion defines a particular relapse-prone subset of childhood acute lymphoblastic leukemia (ALL) in Italian Association of Pediatric Hematology and Oncology Berlin-Frankfurt-Münster (AIEOP-BFM) 2000 protocols. To investigate whether and to what extent different clone sizes influence disease and relapse development, we quantified the genomic P2RY8-CRLF2 fusion product and correlated it with the corresponding CRLF2 expression levels in patients enrolled in the BFM-ALL 2000 protocol in Austria. Of 268 cases without recurrent chromosomal translocations and high hyperdiploidy, representing approximately 50% of all cases, 67 (25%) were P2RY8-CRLF2 positive. The respective clone sizes were ≥ 20% in 27% and < 20% in 73% of them. The cumulative incidence of relapse of the entire fusion-positive group was clone size independent and significantly higher than that of the fusion-negative group (35% ± 8% vs 13% ± 3%, P = .008) and primarily confined to the non-high-risk group. Of 22 P2RY8-CRLF2-positive diagnosis/relapse pairs, only 4/8 had the fusion-positive dominant clone conserved at relapse, whereas none of the original 14 fusion-positive small clones reappeared as the dominant relapse clone. We conclude that the majority of P2RY8-CRLF2-positive clones are small at diagnosis and virtually never generate a dominant relapse clone. Our findings therefore suggest that P2RY8-CRLF2-positive clones do not have the necessary proliferative or selective advantage to evolve into a disease-relevant relapse clone.
Leukemia | 2007
Jan Zuna; H Cavé; C Eckert; T Szczepanski; Claus Meyer; Ester Mejstrikova; Eva Fronkova; Katerina Muzikova; Emmanuelle Clappier; D Mendelova; P Boutard; André Schrauder; J Sterba; Rolf Marschalek; J J M van Dongen; Ondrej Hrusak; Jan Stary; J Trka
Data on secondary acute lymphoblastic leukaemia (sALL) following ALL treatment are very rare. However, the incidence might be underestimated as sALLs without a significant lineage shift might automatically be diagnosed as relapses. Examination of immunoglobulin and T-cell receptor gene rearrangements brought a new tool that can help in discrimination between relapse and sALL. We focused on the recurrences of childhood ALL to discover the real frequency of the sALL after ALL treatment. We compared clonal markers in matched presentation and recurrence samples of 366 patients treated according to the Berlin–Frankfurt–Munster (BFM)-based protocols. We found two cases of sALL and another three, where the recurrence is suspicious of being sALL rather than relapse. Our proposal for the ‘secondary ALL after ALL’ diagnostic criteria is as follows: (A) No clonal relationship between diagnosis and recurrence; (B) significant immunophenotypic shift – significant cytogenetic shift – gain/loss of a fusion gene. For the sALL (A) plus at least one (B) criterion should be fulfilled. With these criteria, the estimated frequency of the sALL after ALL is according to our data 0.5–1.5% of ALL recurrences on BFM-based protocols. Finally, we propose a treatment strategy for the patients with secondary disease.
Leukemia | 2011
C Eckert; T Flohr; R Koehler; Nikola Hagedorn; Anja Moericke; Martin Stanulla; Renate Kirschner-Schwabe; Gunnar Cario; Av Stackelberg; C R Bartram; Günter Henze; M Schrappe; André Schrauder
Minimal residual disease (MRD) quantified after induction treatment of childhood acute lymphoblastic leukemia (ALL) predicts risk of relapse. It has been assumed that early relapses derive from a residual population of leukemic cells, which is still present after induction and that relapsed disease will consequently be more resistant to treatment. To test these hypotheses, we performed a prospective study on patients treated according to the frontline-trial ALL-BFM 2000, which used MRD response for risk-group stratification. Patients (n=45) showed a median time to relapse of 1.5 years. In 89% of patients at least one T-cell-receptor/immunoglobulin gene rearrangement chosen for initial MRD quantification remained stable; however, at least one of the preferred markers for MRD stratification at relapse was different to diagnosis in 50% of patients. A similar proportion of very early, early and late relapses appeared to gain a marker at relapse although backtracking-analysis revealed that in 77% of cases, the gained markers were present as small sub-clones at initial diagnosis. Comparing initial and relapse MRD response to induction, 38% of patients showed a similar, 38% a better and 25% a poorer response after relapse. These data demonstrate an unexpectedly high clonal heterogeneity among very early/early relapses and challenge some current assumptions about relapsed ALL.
Leukemia | 2017
C Vesely; C Frech; C Eckert; Gunnar Cario; A Mecklenbräuker; U zur Stadt; K Nebral; F Kraler; S Fischer; Andishe Attarbaschi; Michael Schuster; Christoph Bock; H Cavé; A von Stackelberg; M Schrappe; Martin A. Horstmann; Georg Mann; Oskar A. Haas; Renate Panzer-Grümayer
Children with P2RY8-CRLF2-positive acute lymphoblastic leukemia have an increased relapse risk. Their mutational and transcriptional landscape, as well as the respective patterns at relapse remain largely elusive. We, therefore, performed an integrated analysis of whole-exome and RNA sequencing in 41 major clone fusion-positive cases including 19 matched diagnosis/relapse pairs. We detected a variety of frequently subclonal and highly instable JAK/STAT but also RTK/Ras pathway-activating mutations in 76% of cases at diagnosis and virtually all relapses. Unlike P2RY8-CRLF2 that was lost in 32% of relapses, all other genomic alterations affecting lymphoid development (58%) and cell cycle (39%) remained stable. Only IKZF1 alterations predominated in relapsing cases (P=0.001) and increased from initially 36 to 58% in matched cases. IKZF1’s critical role is further corroborated by its specific transcriptional signature comprising stem cell features with signs of impaired lymphoid differentiation, enhanced focal adhesion, activated hypoxia pathway, deregulated cell cycle and increased drug resistance. Our findings support the notion that P2RY8-CRLF2 is dispensable for relapse development and instead highlight the prominent rank of IKZF1 for relapse development by mediating self-renewal and homing to the bone marrow niche. Consequently, reverting aberrant IKAROS signaling or its disparate programs emerges as an attractive potential treatment option in these leukemias.
Haematologica | 2006
A Claviez; C Eckert; K Seeger; André Schrauder; Martin Schrappe; Günter Henze; A von Stackelberg