C. P. Verdon
University of Rochester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. P. Verdon.
Optics Communications | 1997
T. R. Boehly; D. L. Brown; R. S. Craxton; R. L. Keck; J. P. Knauer; J. H. Kelly; T. J. Kessler; Steven A. Kumpan; S. J. Loucks; S. A. Letzring; F. J. Marshall; R. L. McCrory; S.F.B. Morse; W. Seka; J. M. Soures; C. P. Verdon
Abstract OMEGA is a 60-terawatt, 60-beam, frequency-tripled Nd:glass laser system designed to perform precision direct-drive inertial-confinement-fusion (ICF) experiments. The upgrade to the system, completed in April 1995, met or surpassed all technical requirements. The acceptance tests demonstrated exceptional performance throughout the system: high driver stability (
Physics of Plasmas | 1998
Stephen E. Bodner; Denis G. Colombant; John H. Gardner; R. H. Lehmberg; Stephen P. Obenschain; Lee Phillips; Andrew J. Schmitt; J. D. Sethian; R. L. McCrory; W. Seka; C. P. Verdon; J. P. Knauer; Bedros Afeyan; Howard T. Powell
Techniques have been developed to improve the uniformity of the laser focal profile, to reduce the ablative Rayleigh–Taylor instability, and to suppress the various laser–plasma instabilities. There are now three direct-drive ignition target designs that utilize these techniques. An evaluation of these designs is still ongoing. Some of them may achieve the gains above 100 that are necessary for a fusion reactor. Two laser systems have been proposed that may meet all of the requirements for a fusion reactor.
Physics of Plasmas | 1998
R. Betti; V.N. Goncharov; R. L. McCrory; C. P. Verdon
A simple procedure is developed to determine the Froude number Fr, the effective power index for thermal conduction ν, the ablation-front thickness L0, the ablation velocity Va, and the acceleration g of laser-accelerated ablation fronts. These parameters are determined by fitting the density and pressure profiles obtained from one-dimensional numerical simulations with the analytic isobaric profiles of Kull and Anisimov [Phys. Fluids 29, 2067 (1986)]. These quantities are then used to calculate the growth rate of the ablative Rayleigh–Taylor instability using the theory developed by Goncharov et al. [Phys. Plasmas 3, 4665 (1996)]. The complicated expression of the growth rate (valid for arbitrary Froude numbers) derived by Goncharov et al. is simplified by using reasonably accurate fitting formulas.
Physics of Plasmas | 1996
J. M. Soures; R. L. McCrory; C. P. Verdon; A. Babushkin; R. E. Bahr; T. R. Boehly; R. Boni; D. K. Bradley; D. L. Brown; R. S. Craxton; J. A. Delettrez; William R. Donaldson; R. Epstein; P. A. Jaanimagi; S.D Jacobs; K. Kearney; R. L. Keck; J. H. Kelly; Terrance J. Kessler; Robert L. Kremens; J. P. Knauer; S. A. Kumpan; S. A. Letzring; D.J Lonobile; S. J. Loucks; L. D. Lund; F. J. Marshall; P.W. McKenty; D. D. Meyerhofer; S.F.B. Morse
OMEGA, a 60‐beam, 351 nm, Nd:glass laser with an on‐target energy capability of more than 40 kJ, is a flexible facility that can be used for both direct‐ and indirect‐drive targets and is designed to ultimately achieve irradiation uniformity of 1% on direct‐drive capsules with shaped laser pulses (dynamic range ≳400:1). The OMEGA program for the next five years includes plasma physics experiments to investigate laser–matter interaction physics at temperatures, densities, and scale lengths approaching those of direct‐drive capsules designed for the 1.8 MJ National Ignition Facility (NIF); experiments to characterize and mitigate the deleterious effects of hydrodynamic instabilities; and implosion experiments with capsules that are hydrodynamically equivalent to high‐gain, direct‐drive capsules. Details are presented of the OMEGA direct‐drive experimental program and initial data from direct‐drive implosion experiments that have achieved the highest thermonuclear yield (1014 DT neutrons) and yield efficienc...
Physics of Plasmas | 1994
J. D. Kilkenny; S. G. Glendinning; S. W. Haan; B. A. Hammel; J. D. Lindl; David H. Munro; B. A. Remington; S. V. Weber; J. P. Knauer; C. P. Verdon
It has been recognized for many years that the most significant limitation of inertial confinement fusion (ICF) is the Rayleigh–Taylor (RT) instability. It limits the distance an ablatively driven shell can be moved to several times its initial thickness. Fortunately material flow through the unstable region at velocity vA reduces the growth rate to √kg/1+kL−βkvA with β from 2–3. In recent years experiments using both x‐ray drive and smoothed laser drive to accelerate foils have confirmed the community’s understanding of the ablative RT instability in planar geometry. The growth of small initial modulations on the foils is measured for growth factors up to 60 for direct drive and 80 for indirect drive. For x‐ray drive large stabilization is evident. After some growth, the instability enters the nonlinear phase when mode coupling and saturation are also seen and compare well with modeling. Normalized growth rates for direct drive are measured to be higher, but strategies for reduction by raising the isentr...
Physics of Plasmas | 1996
R. Betti; V.N. Goncharov; R. L. McCrory; P. Sorotokin; C. P. Verdon
The linear stability analysis of accelerated ablation fronts is carried out self‐consistently by retaining the effect of finite thermal conductivity. Its temperature dependence along with the density gradient scale length are adjusted to fit the density profiles obtained in the one‐dimensional simulations. The effects of diffusive radiation transport are included through the nonlinear thermal conductivity (κ∼Tν). The growth rate is derived by using a boundary layer analysis for Fr≫1 (Fr is the Froude number) and a WKB approximation for Fr≪1. The self‐consistent Atwood number depends on the mode wavelength and the power law index for thermal conduction. The analytic growth rate and cutoff wave number are in good agreement with the numerical solutions for arbitrary ν≳1.
Physics of Plasmas | 1996
V.N. Goncharov; R. Betti; R. L. McCrory; P. Sorotokin; C. P. Verdon
The linear stability analysis of accelerated ablation fronts is carried out self‐consistently by retaining the effect of finite thermal conductivity. Its temperature dependence is included through a power law (κ∼Tν) with a power index ν≳1. The growth rate is derived for Fr≫1 (Fr is the Froude number) by using a boundary layer analysis. The self‐consistent Atwood number and the ablative stabilization term depend on the mode wavelength, the density gradient scale length, and the power index ν. The analytic formula for the growth rate is shown to be in excellent agreement with the numerical fit of Takabe, Mima, Montierth, and Morse [Phys. Fluids 28, 3676 (1985)] for ν=2.5 and the numerical results of Kull [Phys. Fluids B 1, 170 (1989)] over a large range of ν’s.
Review of Scientific Instruments | 1992
D. K. Bradley; P. M. Bell; J. D. Kilkenny; Roy L. Hanks; O. L. Landen; P. A. Jaanimagi; P.W. McKenty; C. P. Verdon
We describe the use of gated microchannel‐plate detectors as high‐speed framing cameras in laser‐driven inertial‐confinement‐fusion experiments. Using an array of pinholes to image the target, detectors capable of generating up to 16 individual frames with ∼90 ps resolution on a single laser shot are now in routine use. The detectors have been used to study the development of intentionally applied perturbations in laser‐driven targets. In off‐line tests new detectors have demonstrated time resolutions better than 40 ps.
Physics of Plasmas | 2000
J. P. Knauer; R. Betti; D. K. Bradley; T. R. Boehly; T.J.B. Collins; V.N. Goncharov; P.W. McKenty; D. D. Meyerhofer; V. A. Smalyuk; C. P. Verdon; S. G. Glendinning; D. H. Kalantar; Robert G. Watt
The results from a series of single-mode, Rayleigh–Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5×1014 W/cm2. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%–7% over a 600 μm diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83–124] of the growth of 20, 31, and 60 ...
Physics of Plasmas | 1995
D. Shvarts; Uri Alon; D. Ofer; R. L. McCrory; C. P. Verdon
The nonlinear evolution of the Rayleigh–Taylor instability from multimode initial perturbations is studied by two complementary approaches. First, a statistical‐mechanics bubble‐merger model is presented, that enables determination of the late‐time scaling properties based on single‐mode and two‐bubble interaction physics. The results for Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) bubble and spike front penetrations are given, as well as scaling laws for mixing under a time‐dependent driving acceleration. The second approach is a modal model, in which nonlinear mode coupling and saturation are included in an equation for effective modes that describe the mixed region. The importance of mode coupling in the generation of large structure that dominates the late stage evolution, and the relative importance of long‐wavelength components in the initial perturbation spectra on the late‐stage evolution are studied. Finally, multimode RT instability in three dimensions is studied by both full‐scale simulatio...