C. Ungarelli
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. Ungarelli.
Physical Review D | 2003
Karim A. Malik; David Wands; C. Ungarelli
We present a gauge-invariant formalism to study the evolution of curvature perturbations in a Friedmann-Robertson-Walker universe filled by multiple interacting fluids. We resolve arbitrary perturbations into adiabatic and entropy components and derive their coupled evolution equations. We demonstrate that perturbations obeying a generalized adiabatic condition remain adiabatic in the large-scale limit, even when one includes energy transfer between fluids. As a specific application we study the recently proposed curvaton model, in which the curvaton decays into radiation. We use the coupled evolution equations to show how an initial isocurvature perturbation in the curvaton gives rise to an adiabatic curvature perturbation after the curvaton decays
Classical and Quantum Gravity | 2006
H. Lück; M. Hewitson; P. Ajith; B. Allen; P. Aufmuth; C. Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; Y. Chen; D. Churches; T. Cokelaer; C. N. Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; A. Freise; I. Gholami; S. Goßler; A. Grant
Of all the large interferometric gravitational-wave detectors, the German/British project GEO600 is the only one which uses dual recycling. During the four weeks of the international S4 data-taking run it reached an instrumental duty cycle of 97% with a peak sensitivity of 7 × 10−22 Hz−1/2 at 1 kHz. This paper describes the status during S4 and improvements thereafter.
Proceedings of SPIE | 2004
K. A. Strain; B. Allen; P. Aufmuth; Carsten Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; D. Churches; T. Cokelaer; Carlo Nicola Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davies; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; Andreas Freise; S. Goßler; A. Grant; H. Grote; S. Grunewald; J. Harms
The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode.
Physical Review D | 2003
Bruce A. Bassett; Martin Kunz; David Parkinson; C. Ungarelli
School of Physics and Astronomy, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK(February 2, 2008)Imagine a scenario in which the dark energy forms via the condensation of dark matter at somelow redshift. The Compton wavelength therefore changes from small to very large at the transition,unlike quintessence or metamorphosis. We study CMB, large scale structure, supernova and radiogalaxy constraints on condensation by performing a 4 parameter likelihood analysis over the Hubbleconstant and the three parameters associated with Q, the condensate field: Ω
Classical and Quantum Gravity | 2005
C. Ungarelli; Pier Stefano Corasaniti; R. A. Mercer; Alberto Vecchio
One of the fundamental and yet untested predictions of inflationary models is the generation of a very weak cosmic background of gravitational radiation. We investigate the sensitivity required for a space-based gravitational wave laser interferometer with peak sensitivity at ~1 Hz to observe such signal as a function of the model parameters and compare it with indirect limits that can be set with data from present and future cosmic microwave background missions. We concentrate on signals predicted by slow-roll single-field inflationary models and instrumental configurations such as those proposed for the LISA follow-on mission: big bang observer.
Classical and Quantum Gravity | 2004
J. R. Smith; B. Allen; P. Aufmuth; Carsten Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; D. Churches; T. Cokelaer; Carlo Nicola Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davies; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; Andreas Freise; S. Gossler; A. Grant; H. Grote; S. Grunewald; J. Harms
The German-British laser-interferometric gravitational-wave detector GEO 600 is currently being commissioned as part of a worldwide network of gravitational-wave detectors. GEO 600 recently became the first kilometre-scale interferometer to employ dual recycling-an optical configuration that combines power recycling and signal recycling. We present a brief overview of the commissioning of this dual-recycled interferometer, the performance results achieved during a subsequent extended data-taking period, and the plans intended to bring GEO 600 to its final configuration.
Classical and Quantum Gravity | 2004
C. Ungarelli; Alberto Vecchio
We consider a three-dimensional family of filters based on broken power-law spectra to search for gravitational wave stochastic backgrounds in the data from Earth-based laser interferometers. We show that such templates produce the necessary fitting factor for a wide class of cosmological backgrounds and astrophysical foregrounds, and that the total number of filters required to search for those signals in the data from first generation laser interferometers operating at the design sensitivity is fairly small.
Classical and Quantum Gravity | 2006
B. Willke; P. Ajith; B. Allen; P. Aufmuth; C. Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; Y. Chen; D. Churches; T. Cokelaer; C. N. Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; A. Freise; I. Gholami; S. Goßler; A. Grant; H. Grote