Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cammie Rinehart is active.

Publication


Featured researches published by Cammie Rinehart.


Journal of Clinical Investigation | 2008

Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins

Marta Guix; Anthony C. Faber; Shizhen Emily Wang; Maria Graciela Olivares; Youngchul Song; Sherman Qu; Cammie Rinehart; Brenda Seidel; Douglas Yee; Carlos L. Arteaga; Jeffrey A. Engelman

Although some cancers are initially sensitive to EGFR tyrosine kinase inhibitors (TKIs), resistance invariably develops. We investigated mechanisms of acquired resistance to the EGFR TKI gefitinib by generating gefitinib-resistant (GR) A431 squamous cancer cells. In GR cells, gefitinib reduced phosphorylation of EGFR, ErbB-3, and Erk but not Akt. These cells also showed hyperphosphorylation of the IGFI receptor (IGFIR) and constitutive association of IRS-1 with PI3K. Inhibition of IGFIR signaling disrupted the association of IRS-1 with PI3K and restored the ability of gefitinib to downregulate PI3K/Akt signaling and to inhibit GR cell growth. Gene expression analyses revealed that GR cells exhibited markedly reduced IGF-binding protein 3 (IGFBP-3) and IGFBP-4 RNA. Addition of recombinant IGFBP-3 restored the ability of gefitinib to downregulate PI3K/Akt signaling and to inhibit cell growth. Finally, gefitinib treatment of mice with A431 xenografts in combination with an IGFIR-specific monoclonal antibody prevented tumor recurrence, whereas each drug given alone was unable to do so. These data suggest that loss of expression of IGFBPs in tumor cells treated with EGFR TKIs derepresses IGFIR signaling, which in turn mediates resistance to EGFR antagonists. Moreover, combined therapeutic inhibition of EGFR and IGFIR may abrogate this acquired mechanism of drug resistance and is thus worthy of prospective clinical investigation.


Clinical Cancer Research | 2007

Human Breast Cancer Cells Selected for Resistance to Trastuzumab In vivo Overexpress Epidermal Growth Factor Receptor and ErbB Ligands and Remain Dependent on the ErbB Receptor Network

Christoph A. Ritter; Marianela Perez-Torres; Cammie Rinehart; Marta Guix; Teresa C. Dugger; Jeffrey A. Engelman; Carlos L. Arteaga

Purpose: We have investigated mechanisms of acquired resistance to the HER2 antibody trastuzumab in BT-474 human breast cancer cells. Experimental Design: BT-474 xenografts established in athymic nude mice were eliminated by trastuzumab. Continuous cell lines (HR for Herceptin resistant) were generated from tumors that recurred in the presence of continuous antibody therapy. Results: The isolated cells behaved resistant to trastuzumab in culture as well as when reinjected into nude mice. They retained HER2 gene amplification and trastuzumab binding and were exquisitely sensitive to peripheral blood mononuclear cells ex vivo in the presence of the antibody. The HR cells exhibited higher levels of phosphorylated epidermal growth factor receptor (EGFR) and EGFR/HER2 heterodimers. Phosphorylation of HER2 in HR cells was inhibited by the EGFR tyrosine kinase inhibitors erlotinib and gefitinib. Gefitinib also inhibited the basal association of p85 with phosphorylated HER3 in HR cells. Both inhibitors as well as the dual EGFR/HER2 inhibitor, lapatinib, induced apoptosis of the HR cells in culture. Growth of established HR5 xenografts was inhibited by erlotinib in vivo. In addition, the HR cells overexpressed EGFR, transforming growth factor α, heparin-binding EGF, and heregulin RNAs compared with the parental trastuzumab-sensitive cells. Conclusions: These results are consistent with the inability of trastuzumab to block the heterodimerization of HER2 and suggest that amplification of ligand-induced activation of ErbB receptors is a plausible mechanism of acquired resistance to trastuzumab that should be investigated in primary mammary cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase

Joan T. Garrett; Maria Graciela Olivares; Cammie Rinehart; Nara De Matos Granja-Ingram; Violeta Sanchez; Anindita Chakrabarty; Bhuvanesh Dave; Rebecca S. Cook; William Pao; Eliot McKinely; Henry C. Manning; Jenny Chang; Carlos L. Arteaga

Sustained and complete inhibition of HER3 and its output to PI3K/Akt are required for the optimal antitumor effect of therapeutic inhibitors of the HER2 oncogene. Here, we show that, after inhibition of the HER2 tyrosine kinase with lapatinib, there is PI3K/Akt and FoxO3a-dependent up-regulation of HER3 mRNA and protein. Up-regulated HER3 was then phosphorylated by residual HER2 activity, thus partially maintaining P-Akt and limiting the antitumor action of lapatinib. Inhibition of HER3 with siRNA or a neutralizing HER3 antibody sensitized HER2+ breast cancer cells and xenografts to lapatinib both in vitro and in vivo. Combined blockade of HER2 and HER3 inhibited pharmacodynamic biomarkers of PI3K/Akt activity more effectively than each inhibitor alone. These results suggest that because of HER3-mediated compensation, current clinical inhibitors of HER2 and PI3K/Akt will not block the PI3K pathway completely. They also suggest that therapeutic inhibitors of HER3 should be used in combination with HER2 inhibitors and PI3K pathway inhibitors in patients with HER2- and PI3K-dependent cancers.


Journal of Clinical Investigation | 2007

Inhibition of TGF-β with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression

Swati Biswas; Marta Guix; Cammie Rinehart; Teresa C. Dugger; Anna Chytil; Harold L. Moses; Carlos L. Arteaga

We investigated whether TGF-beta induced by anticancer therapies accelerates tumor progression. Using the MMTV/PyVmT transgenic model of metastatic breast cancer, we show that administration of ionizing radiation or doxorubicin caused increased circulating levels of TGF-beta1 as well as increased circulating tumor cells and lung metastases. These effects were abrogated by administration of a neutralizing pan-TGF-beta antibody. Circulating polyomavirus middle T antigen-expressing tumor cells did not grow ex vivo in the presence of the TGF-beta antibody, suggesting autocrine TGF-beta is a survival signal in these cells. Radiation failed to enhance lung metastases in mice bearing tumors that lack the type II TGF-beta receptor, suggesting that the increase in metastases was due, at least in part, to a direct effect of TGF-beta on the cancer cells. These data implicate TGF-beta induced by anticancer therapy as a pro-metastatic signal in tumor cells and provide a rationale for the simultaneous use of these therapies in combination with TGF-beta inhibitors.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors

Anindita Chakrabarty; Violeta Sanchez; Maria G. Kuba; Cammie Rinehart; Carlos L. Arteaga

We examined the effects of an inhibitor of PI3K, XL147, against human breast cancer cell lines with constitutive PI3K activation. Treatment with XL147 resulted in dose-dependent inhibition of cell growth and levels of pAKT and pS6, signal transducers in the PI3K/AKT/TOR pathway. In HER2-overexpressing cells, inhibition of PI3K was followed by up-regulation of expression and phosphorylation of multiple receptor tyrosine kinases, including HER3. Knockdown of FoxO1 and FoxO3a transcription factors suppressed the induction of HER3, InsR, IGF1R, and FGFR2 mRNAs upon inhibition of PI3K. In HER2+ cells, knockdown of HER3 with siRNA or cotreatment with the HER2 inhibitors trastuzumab or lapatinib enhanced XL147-induced cell death and inhibition of pAKT and pS6. Trastuzumab and lapatinib each synergized with XL147 for inhibition of pAKT and growth of established BT474 xenografts. These data suggest that PI3K antagonists will inhibit AKT and relieve suppression of receptor tyrosine kinase expression and their activity. Relief of this feedback limits the sustained inhibition of the PI3K/AKT pathway and attenuates the response to these agents. As a result, PI3K pathway inhibitors may have limited clinical activity overall if used as single agents. In patients with HER2-overexpressing breast cancer, PI3K inhibitors should be used in combination with HER2/HER3 antagonists.


Oncogene | 2011

Phosphoproteomic mass spectrometry profiling links Src family kinases to escape from HER2 tyrosine kinase inhibition

Brent N Rexer; Amy-Joan L. Ham; Cammie Rinehart; S. Hill; N. De Matos Granja-Ingram; Ana M. Gonzalez-Angulo; Gordon B. Mills; Bhuvanesh Dave; Jenny C. Chang; D. C. Liebler; Carlos L. Arteaga

Despite the initial effectiveness of the tyrosine kinase inhibitor lapatinib against HER2 gene-amplified breast cancers, most patients eventually relapse after treatment, implying that tumors acquire mechanisms of drug resistance. To discover these mechanisms, we generated six lapatinib-resistant HER2-overexpressing human breast cancer cell lines. In cells that grew in the presence of lapatinib, HER2 autophosphorylation was undetectable, whereas active phosphoinositide-3 kinase (PI3K)-Akt and mitogen-activated protein kinase (MAPK) were maintained. To identify networks maintaining these signaling pathways, we profiled the tyrosine phosphoproteome of sensitive and resistant cells using an immunoaffinity-enriched mass spectrometry method. We found increased phosphorylation of Src family kinases (SFKs) and putative Src substrates in several resistant cell lines. Treatment of these resistant cells with Src kinase inhibitors partially blocked PI3K-Akt signaling and restored lapatinib sensitivity. Further, SFK mRNA expression was upregulated in primary HER2+ tumors treated with lapatinib. Finally, the combination of lapatinib and the Src inhibitor AZD0530 was more effective than lapatinib alone at inhibiting pAkt and growth of established HER2-positive BT-474 xenografts in athymic mice. These data suggest that increased Src kinase activity is a mechanism of lapatinib resistance and support the combination of HER2 antagonists with Src inhibitors early in the treatment of HER2+ breast cancers in order to prevent or overcome resistance to HER2 inhibitors.


Cancer Research | 2012

HER3 Is Required for HER2-Induced Preneoplastic Changes to the Breast Epithelium and Tumor Formation

David B. Vaught; Jamie C. Stanford; Christian D. Young; Donna Hicks; Frank Wheeler; Cammie Rinehart; Violeta Sanchez; John G. Koland; William J. Muller; Carlos L. Arteaga; Rebecca S. Cook

Increasing evidence suggests that HER2-amplified breast cancer cells use HER3/ErbB3 to drive therapeutic resistance to HER2 inhibitors. However, the role of ErbB3 in the earliest events of breast epithelial transformation remains unknown. Using mouse mammary specific models of Cre-mediated ErbB3 ablation, we show that ErbB3 loss prevents the progressive transformation of HER2-overexpressing mammary epithelium. Decreased proliferation and increased apoptosis were seen in MMTV-HER2 and MMTV-Neu mammary glands lacking ErbB3, thus inhibiting premalignant HER2-induced hyperplasia. Using a transgenic model in which HER2 and Cre are expressed from a single polycistronic transcript, we showed that palpable tumor penetrance decreased from 93.3% to 6.7% upon ErbB3 ablation. Penetrance of ductal carcinomas in situ was also decreased. In addition, loss of ErbB3 impaired Akt and p44/42 phosphorylation in preneoplastic HER2-overexpressing mammary glands and in tumors, decreased growth of preexisting HER2-overexpressing tumors, and improved tumor response to the HER2 tyrosine kinase inhibitor lapatinib. These events were rescued by reexpression of ErbB3, but were only partially rescued by ErbB36F, an ErbB3 mutant harboring six tyrosine-to-phenylalanine mutations that block its interaction with phosphatidyl inositol 3-kinase. Taken together, our findings suggest that ErbB3 promotes HER2-induced changes in the breast epithelium before, during, and after tumor formation. These results may have important translational implications for the treatment and prevention of HER2-amplified breast tumors through ErbB3 inhibition.


Cancer Research | 2011

ErbB3 Ablation Impairs PI3K/Akt-Dependent Mammary Tumorigenesis

Rebecca S. Cook; Joan T. Garrett; Violeta Sanchez; Jamie C. Stanford; Christian D. Young; Anindita Chakrabarty; Cammie Rinehart; Yixian Zhang; Yaming Wu; Lee M. Greenberger; Ivan D. Horak; Carlos L. Arteaga

The ErbB receptor family member ErbB3 has been implicated in breast cancer growth, but it has yet to be determined whether its disruption is therapeutically valuable. In a mouse model of mammary carcinoma driven by the polyomavirus middle T (PyVmT) oncogene, the ErbB2 tyrosine kinase inhibitor lapatinib reduced the activation of ErbB3 and Akt as well as tumor cell growth. In this phosphatidylinositol-3 kinase (PI3K)-dependent tumor model, ErbB2 is part of a complex containing PyVmT, p85 (PI3K), and ErbB3, that is disrupted by treatment with lapatinib. Thus, full engagement of PI3K/Akt by ErbB2 in this oncogene-induced mouse tumor model may involve its ability to dimerize with and phosphorylate ErbB3, which itself directly binds PI3K. In this article, we report that ErbB3 is critical for PI3K/Akt-driven tumor formation triggered by the PyVmT oncogene. Tissue-specific, Cre-mediated deletion of ErbB3 reduced Akt phosphorylation, primary tumor growth, and pulmonary metastasis. Furthermore, EZN-3920, a chemically stabilized antisense oligonucleotide that targets the ErbB3 mRNA in vivo, produced similar effects while causing no toxicity in the mouse model. Our findings offer further preclinical evidence that ErbB3 ablation may be therapeutically effective in tumors where ErbB3 engages PI3K/Akt signaling.


Proceedings of the National Academy of Sciences of the United States of America | 2012

The receptor tyrosine kinase ErbB3 maintains the balance between luminal and basal breast epithelium

Justin M. Balko; Todd W. Miller; Meghan M. Morrison; Katherine E. Hutchinson; Christian D. Young; Cammie Rinehart; Violeta Sanchez; David Jee; Kornelia Polyak; Aleix Prat; Charles M. Perou; Carlos L. Arteaga; Rebecca S. Cook

ErbB3 harbors weak kinase activity, but strongly activates downstream phosphatidylinositol 3-kinase/Akt signaling through heterodimerization with and activation by other ErbB receptor tyrosine kinases. We report here that ErbB3 loss in the luminal mammary epithelium of mice impaired Akt and MAPK signaling and reduced luminal cell proliferation and survival. ERBB3 mRNA expression levels were highest in luminal mammary populations and lowest in basal cell/stem cell populations. ErbB3 loss in mammary epithelial cells shifted gene expression patterns toward a mammary basal cell/stem cell signature. ErbB3 depletion-induced gene expression changes were rescued upon activation of Akt and MAPK signaling. Interestingly, proliferation and expansion of the mammary basal epithelium (BE) occurred upon ErbB3 targeting in the luminal epithelium, but not upon its targeting in the BE. Multiple cytokines, including interleukin 6, were induced upon ErbB3 depletion in luminal epithelium cells, which increased growth of BE cells. Taken together, these results suggest that ErbB3 regulates the balance of differentiated breast epithelial cell types by regulating their growth and survival through autocrine- and paracrine-signaling mechanisms.


Clinical Cancer Research | 2008

Expression of t-DARPP Mediates Trastuzumab Resistance in Breast Cancer Cells

Abbes Belkhiri; Altaf A. Dar; Dun Fa Peng; Mohammad H. Razvi; Cammie Rinehart; Carlos L. Arteaga; Wael El-Rifai

Purpose: We have investigated the role of t-DARPP in trastuzumab resistance in ERBB2-amplified and overexpressed breast cancer cell lines. Experimental Design: We have used the HR-5 and HR-6 trastuzumab-resistant cells that were established from tumors that recurred in the presence of trastuzumab therapy following xenografts of BT-474 cells in nude mice. In addition, SKBR-3 cells, engineered for stable expression of t-DARPP, and HCC-1569 cells, which have constitutive expression of t-DARPP and are de novo resistant to trastuzumab, were used. Results: We reported ≥15-fold up-regulation of mRNA and protein levels of t-DARPP in HR-5 and HR-6 cells compared with their progenitor BT-474 trastuzumab-sensitive cells. The t-DARPP expression was not regulated by changes in its promoter DNA methylation levels. The SKBR-3 cells stably expressing t-DARPP developed resistance to trastuzumab compared with their parental cells and empty vector controls (P < 0.01). The trastuzumab-resistant cell lines showed a significant increase in pAKT (Ser473) and BCL2 protein levels. The small interfering RNA knockdown of t-DARPP in all trastuzumab-resistant cells led to a significant reduction in ERBB2, pAKT (Ser473), and BCL2 protein levels with a significant decrease in cell viability (P ≤ 0.001) and an increase in cleaved caspase-3 levels, indicating the progression of these cells toward apoptosis. The t-DARPP protein was associated with both heat shock protein 90 and ERBB2 forming a potential protein complex. This association may play a role in regulating ERBB2 protein in trastuzumab-resistant cells. Conclusion: We conclude that t-DARPP is a novel molecular target that can mediate the therapeutic resistance to trastuzumab in breast cancer cells.

Collaboration


Dive into the Cammie Rinehart's collaboration.

Top Co-Authors

Avatar

Carlos L. Arteaga

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrei V. Bakin

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Bhuvanesh Dave

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge