Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Candace M. Cham is active.

Publication


Featured researches published by Candace M. Cham.


Cell Host & Microbe | 2015

Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism.

Vanessa Leone; Sean M. Gibbons; Kristina Martinez; Alan L. Hutchison; Edmond Y. Huang; Candace M. Cham; Joseph F. Pierre; Aaron F. Heneghan; Anuradha Nadimpalli; Nathaniel Hubert; Elizabeth Zale; Yunwei Wang; Yong Huang; Betty Theriault; Aaron R. Dinner; Mark W. Musch; Kenneth A. Kudsk; Brian J. Prendergast; Jack A. Gilbert; Eugene B. Chang

Circadian clocks and metabolism are inextricably intertwined, where central and hepatic circadian clocks coordinate metabolic events in response to light-dark and sleep-wake cycles. We reveal an additional key element involved in maintaining host circadian rhythms, the gut microbiome. Despite persistence of light-dark signals, germ-free mice fed low or high-fat diets exhibit markedly impaired central and hepatic circadian clock gene expression and do not gain weight compared to conventionally raised counterparts. Examination of gut microbiota in conventionally raised mice showed differential diurnal variation in microbial structure and function dependent upon dietary composition. Additionally, specific microbial metabolites induced under low- or high-fat feeding, particularly short-chain fatty acids, but not hydrogen sulfide, directly modulate circadian clock gene expression within hepatocytes. These results underscore the ability of microbially derived metabolites to regulate or modify central and hepatic circadian rhythm and host metabolic function, the latter following intake of a Westernized diet.


Journal of Immunology | 2005

Glucose Availability Regulates IFN-γ Production and p70S6 Kinase Activation in CD8+ Effector T Cells

Candace M. Cham; Thomas F. Gajewski

Differentiation of CD8+ T cells from the naive to the effector state is accompanied by changes in basal gene expression profiles that parallel the acquisition of effector functions. Among these are metabolism genes, and we now show that 2C TCR transgenic effector CD8+ T cells express higher levels of glycolytic enzymes and display greater glucose uptake, a higher glycolytic rate, and increased lactate production compared with naive cells. To determine whether glucose was required for effector T cell functions, we regulated glucose availability in vitro. Glucose deprivation strongly inhibited IFN-γ gene expression, whereas IL-2 production was little affected. Inhibition correlated with diminished phosphorylation of p70S6 kinase and eIF4E binding protein 1 and a requirement for de novo protein synthesis, whereas other signaling pathways known to regulate IFN-γ expression were unaffected. Together, our data reveal that optimal induction of IFN-γ transcription is a glucose-dependent process, indicate that there are undefined factors that influence IFN-γ expression, and have implications for regulation of the effector phase of CD8+ T cell responses in tissue microenvironments.


European Journal of Immunology | 2008

Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells†

Candace M. Cham; Gregory Driessens; James P. O'Keefe; Thomas F. Gajewski

We recently reported that differentiation of CD8+ T cells from the naïve to the effector state involves the upregulation of glucose‐dependent metabolism. Glucose deprivation or inhibition of glycolysis by 2‐deoxy‐D‐glucose (2‐DG) selectively inhibited production of IFN‐γ but not of IL‐2. To determine a more global role of glucose metabolism on effector T‐cell function, we performed gene array analysis on CD8+ effector T cells stimulated in the presence or absence of 2‐DG. We observed that expression of only 10% of genes induced by TCR/CD28 signaling was inhibited by 2‐DG. Among these were genes for key cytokines, cell cycle molecules, and cytotoxic granule proteins. Consistent with these results, production of IFN‐γ and GM‐CSF, cell cycle progression, upregulation of cyclin D2 protein, cytolytic activity, and upregulation of granzyme B protein and also conjugate formation were exquisitely glucose‐dependent. In contrast to glucose, oxygen was little utilized by CD8+ effector T cells, and relative oxygen deprivation did not inhibit these CTL functional properties. Our results indicate a particularly critical role for glucose in regulating specific effector functions of CD8+ T cells and have implications for the maintenance of the effector phase of cellular immune responses in target tissue microenvironments such as a solid tumor.


Journal of Clinical Investigation | 1997

Susceptibility to atherosclerosis in mice expressing exclusively apolipoprotein B48 or apolipoprotein B100.

Murielle M. Véniant; Vincenzo Pierotti; Dale Newland; Candace M. Cham; David A. Sanan; Rosemary L. Walzem; Stephen G. Young

All classes of lipoproteins considered to be atherogenic contain apo-B100 or apo-B48. However, there is a distinct paucity of data regarding whether lipoproteins containing apo-B48 or apo-B100 differ in their intrinsic ability to promote the development of atherosclerosis. To address this issue, we compared the extent of atherosclerosis in three groups of animals: apo-E-deficient mice (apo-B+/+apo-E-/-) and apo-E-deficient mice that synthesize exclusively either apo-B48 (apo-B48/48apo-E-/-) or apo-B100 (apo-B100/100apo-E-/-). Mice (n = 25 in each group) were fed a chow diet for 200 days, and plasma lipid levels were assessed throughout the study. Compared with the levels in apo-B+/+apo-E-/- mice, the total plasma cholesterol levels were higher in the apo-B48/48apo-E-/- mice and were lower in the apo-B100/100apo-E-/- mice. However, the ranges of cholesterol levels in the three groups overlapped. Compared with those in the apo-B+/+apo-E-/- mice, atherosclerotic lesions were more extensive in the apo-B48/48apo-E-/- mice and less extensive in the apo-B100/100apo-E-/- mice. Once again, however, there was overlap among the three groups. The extent of atherosclerosis in each group of mice correlated significantly with plasma cholesterol levels. In mice from different groups that had similar cholesterol levels, the extent of atherosclerosis was quite similar. Thus, susceptibility to atherosclerosis was dependent on total cholesterol levels. Whether mice synthesized apo-B48 or apo-B100 did not appear to have an independent effect on susceptibility to atherosclerosis.


Journal of Clinical Investigation | 1995

A genetic model for absent chylomicron formation: mice producing apolipoprotein B in the liver, but not in the intestine.

Stephen G. Young; Candace M. Cham; Robert E. Pitas; Betty J. Burri; Andrew J. Connolly; Laura M. Flynn; A S Pappu; Jinny S. Wong; Robert L. Hamilton; Robert V. Farese

The formation of chylomicrons by the intestine is important for the absorption of dietary fats and fat-soluble vitamins (e.g., retinol, alpha-tocopherol). Apo B plays an essential structural role in the formation of chylomicrons in the intestine as well as the VLDL in the liver. We have developed genetically modified mice that express apo B in the liver but not in the intestine. By electron microscopy, the enterocytes of these mice lacked nascent chylomicrons in the endoplasmic reticulum and Golgi apparatus. Because these mice could not form chylomicrons, the intestinal villus enterocytes were massively engorged with fat, which was contained in cytosolic lipid droplets. These mice absorbed D-xylose normally, but there was virtually no absorption of retinol palmitate or cholesterol. The levels of alpha-tocopherol in the plasma were extremely low. Of note, the absence of chylomicron synthesis in the intestine did not appear to have a significant effect on the plasma levels of the apo B-containing lipoproteins produced by the liver. The mice lacking intestinal apo B expression represent the first genetic model of defective absorption of fats and fat-soluble vitamins and provide a useful animal model for studying nutrition and lipoprotein metabolism.


Journal of Clinical Investigation | 2015

Cytosolic HMGB1 controls the cellular autophagy/apoptosis checkpoint during inflammation

Xiaorong Zhu; Jeannette S. Messer; Yunwei Wang; Fanfei Lin; Candace M. Cham; Jonathan E. Chang; Timothy R. Billiar; Michael T. Lotze; David L. Boone; Eugene B. Chang

The intracellular protein HMGB1 is released from cells and acts as a damage-associated molecular pattern molecule during many diseases, including inflammatory bowel disease (IBD); however, the intracellular function of HMGB1 during inflammation is poorly understood. Here, we demonstrated that cytosolic HMGB1 regulates apoptosis by protecting the autophagy proteins beclin 1 and ATG5 from calpain-mediated cleavage during inflammation. Colitis in mice with an intestinal epithelial cell-specific Hmgb1 deletion and patients with IBD were both characterized by increased calpain activation, beclin 1 and ATG5 cleavage, and intestinal epithelial cell (IEC) death compared with controls. In vitro cleavage assays and studies of enteroids verified that HMGB1 protects beclin 1 and ATG5 from calpain-mediated cleavage events that generate proapoptotic protein fragments. Together, our results indicate that HMGB1 is essential for mitigating the extent and severity of inflammation-associated cellular injury by controlling the switch between the proautophagic and proapoptotic functions of beclin 1 and ATG5 during inflammation. Moreover, these studies demonstrate that HMGB1 is pivotal for reducing tissue injury in IBD and other complex inflammatory disorders.


Journal of Clinical Investigation | 1998

Dual mechanisms for the low plasma levels of truncated apolipoprotein B proteins in familial hypobetalipoproteinemia. Analysis of a new mouse model with a nonsense mutation in the Apob gene.

E Kim; Candace M. Cham; Murielle M. Véniant; Patricia Ambroziak; Stephen G. Young

Familial hypobetalipoproteinemia (FHbeta), a syndrome characterized by low plasma cholesterol levels, is caused by mutations in the apo-B gene that interfere with the synthesis of apo-B100. FHbeta mutations frequently lead to the synthesis of a truncated form of apo-B, which typically is present in plasma at < 5% of the levels of apo-B100. Although many FHbeta mutations have been characterized, the basic mechanisms causing the low plasma levels of truncated apo-B variants have not been defined. We used gene targeting to create a mutant allele that exclusively yields a truncated apo-B, apo-B83. In mice heterozygous for the Apob83 allele, plasma levels and the size and density distribution of apo-B83-containing lipoproteins were strikingly similar to those observed in humans with FHbeta and an apo-B83 mutation. Analysis of mice carrying the Apob83 mutation revealed two mechanisms for the low plasma levels of apo-B83. First, Apob83 mRNA levels and apo-B83 secretion were reduced 76 and 72%, respectively. Second, apo-B83 was removed rapidly from the plasma, compared with apo-B100. This mouse model provides a new level of understanding of FHbeta and adds new insights into apo-B metabolism.


Clinical & Developmental Immunology | 2012

Interferon Regulatory Factor 5 in the Pathogenesis of Systemic Lupus Erythematosus

Candace M. Cham; Kichul Ko; Timothy B. Niewold

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple genetic risk factors, high levels of interferon alpha (IFN-α), and the production of autoantibodies against components of the cell nucleus. Interferon regulatory factor 5 (IRF5) is a transcription factor which induces the transcription of IFN-α and other cytokines, and genetic variants of IRF5 have been strongly linked to SLE pathogenesis. IRF5 functions downstream of Toll-like receptors and other microbial pattern-recognition receptors, and immune complexes made up of SLE-associated autoantibodies seem to function as a chronic endogenous stimulus to this pathway. In this paper, we discuss the physiologic role of IRF5 in immune defense and the ways in which IRF5 variants may contribute to the pathogenesis of human SLE. Recent data regarding the role of IRF5 in both serologic autoimmunity and the overproduction of IFN-α in human SLE are summarized. These data support a model in which SLE-risk variants of IRF5 participate in a “feed-forward” mechanism, predisposing to SLE-associated autoantibody formation, and subsequently facilitating IFN-α production downstream of Toll-like receptors stimulated by immune complexes composed of these autoantibodies.


Immunologic Research | 2005

Metabolic mechanisms of tumor resistance to T cell effector function

Candace M. Cham; Thomas F. Gajewski

Established tumors develop ways to elude destruction by the host immune system. Recent work has revealed that tumors can take advantage of the generation of metabolic dysregulation to inhibit immune responses. Effector T-cell functions are particularly sensitive to nutrient availability in the tumor microenvironment. In this review, we highlight experimental data supporting the importance of glucose, oxygen, tryptophan, and arginine for optimal T-cell function, and the mechanisms by which these nutrients may become depleted in the tumor microenvironment. These observations provide a conceptual framework for modulating metabolic features of the T cell-tumor interaction, toward the end of promoting more effective immune-mediated tumor destruction in vivo.


Gastroenterology | 2010

Human Risk Allele HLA-DRB1*0405 Predisposes Class II Transgenic Ab0 NOD Mice to Autoimmune Pancreatitis

Tobias L. Freitag; Candace M. Cham; Hsiang–Hsuan Sung; Georg F. Beilhack; Ivana Durinovic–Belló; Salil D. Patel; Roderick T. Bronson; Detlef Schuppan; Grete Sønderstrup

BACKGROUND & AIMS Autoimmune pancreatitis (AIP) underlies 5%-11% of cases of chronic pancreatitis. An association between AIP and the human leukocyte antigen (HLA)-DRB1*0405/DQB1*0401 haplotype has been reported, but linkage disequilibrium has precluded the identification of predisposing HLA gene(s). We studied the role of single HLA genes in the development of AIP in transgenic mice. METHODS CD4(+) T-cell-negative I-Abeta chain(-/-) (Ab0) mice develop AIP spontaneously, likely due to dysregulation of CD8(+) T- cell responses. We generated Ab0 nonobese diabetic (NOD) mice transgenic for HLA-DR*0405, leading to rescue of CD4(+) T cells; we compared their susceptibility to AIP with HLA-DQ8 or HLA-DR*0401 (single) transgenic, or HLA-DR*0405/DQ8 (double) transgenic mice. RESULTS CD4(+) T-cell-competent HLA-DR*0405 transgenic Ab0 NOD mice develop AIP with high prevalence after sublethal irradiation and adoptive transfer of CD90(+) T cells, leading to complete pancreatic atrophy. HLA-DR*0405 transgenic mice can also develop unprovoked AIP, whereas HLA-DR*0401, HLA-DQ8, and HLA-DR*0405/DQ8 transgenic Ab0 NOD controls all remained normal, even after irradiation and adoptive transfer of CD90(+) T cells. Pancreas histology in HLA-DR*0405 transgenic mice was characterized by destructive infiltration of the exocrine tissue with CD4(+) and CD8(+) T cells, B cells, and macrophages. Mice with complete pancreatic atrophy lost weight, developed fat stools, and had reduced levels of serum lipase activity. CONCLUSIONS Because HLA-DR*0405 expression fails to protect mice from AIP, the HLA-DRB1*0405 allele appears to be an important risk factor for AIP on the HLA-DRB1*0405/DQB1*0401 haplotype. This humanized mouse model should be useful for studying immunopathogenesis, diagnostic markers, and therapy of human AIP.

Collaboration


Dive into the Candace M. Cham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron F. Heneghan

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth A. Kudsk

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge