Carl-Mikael Zetterling
Royal Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carl-Mikael Zetterling.
Archive | 2002
Carl-Mikael Zetterling
Introduction 1 Advantages of SiC C.-M.Zetterling and M.Ostling 2 Bulk and epitaxial growth of SiC N.Nordell 3 Ion implantation and diffusion in SiC A.Schoner 4 Wet and dry etching of SiC S.J.Pearton 5 Thermally grown and deposited thermoelectrics E.O.Sveinbjornsson and C.-M.Zetterling 6 Schottky and ohmic contacts to SiC C.-M.Zetterling, S.-K.Lee and M.Ostling 7 Devices in SiC C.-M.Zetterling, S.M.Koo and M.Ostling Appendix 1: Other resources Appendix 2: Glossary Index
international symposium on power semiconductor devices and ic's | 2011
Mikael Östling; Reza Ghandi; Carl-Mikael Zetterling
Silicon carbide (SiC) semiconductor devices for high power applications are now commercially available as discrete devices. Recently Schottky diodes are offered by both USA and Europe based companies. Active switching devices such as bipolar junction transistors (BJTs), field effect transistors (JFETs and MOSFETs) are now available on the commercial market. The interest is rapidly growing for these devices in high power and high temperature applications. The main advantages of wide bandgap semiconductors are their very high critical electric field capability. From a power device perspective the high critical field strength can be used to design switching devices with much lower losses than conventional silicon based devices both for on-state losses and reduced switching losses. This paper reviews the current state of the art in active switching device performance for both SiC and GaN. SiC material quality and epitaxy processes have greatly improved and degradation free 100 mm wafers are readily available. The SiC wafer roadmap looks very favorable as volume production takes off. For GaN materials the main application area is geared towards the lower power rating level up to 1 kV on mostly lateral FET designs. Power module demonstrations are beginning to appear in scientific reports and real applications. A short review is therefore given. Other advantages of SiC is the possibility of high temperature operation (> 300 °C) and in radiation hard environments, which could offer considerable system advantages.
Journal of Vacuum Science and Technology | 1998
J. J. Wang; E. S. Lambers; S. J. Pearton; Mikael Östling; Carl-Mikael Zetterling; J. M. Grow; F. Ren; R. J. Shul
A parametric study of the etching characteristics of 6H p+ and n+ SiC and thin-film SiC0.5N0.5 in inductively coupled plasma (ICP) NF3/O2 and NF3/Ar discharges has been performed. The etch rates in both chemistries increase monotonically with NF3 percentage and rf chuck power. The etch rates go through a maximum with increasing ICP source power, which is explained by a trade-off between the increasing ion flux and the decreasing ion energy. The anisotropy of the etched features is also a function of ion flux, ion energy and atomic fluorine neutral concentration. Indium-tin-oxide masks display relatively good etch selectivity over SiC (maximum of ∌70:1), while photoresist etches more rapidly than SiC. The surface roughness of SiC is essentially independent of plasma composition for NF3/O2 discharges, while extensive surface degradation occurs for SiCN under high NF3:O2 conditions. © 1998 American Vacuum Society.
Solid-state Electronics | 2002
Sang Kwon Lee; Carl-Mikael Zetterling; Mikael Östling; Ingvar Åberg; Martin Magnusson; Knut Deppert; Lars-Erik Wernersson; Lars Samuelson; A Litwin
By the incorporation of size-selected Au nano-particles in Ti Schottky contacts on silicon carbide, we could observe considerably lower the barrier height of the contacts. This result could be obtained for both n- and p-type Schottky contacts using current-voltage and capacitance voltage measurements. For n-type Schottky contacts, we observed reductions of 0.19-0.25 eV on 4H-SiC and 0.15-0.17 eV on 6H-SiC as compared with particle-free Ti Schottky contacts. For p-type SiC, the reduction was a little lower with 0.02-0.05 eV on 4H- and 0.10-0.13 eV on 6H-SiC. The reduction of the Schottky barrier height is explained using a model with enhanced electric field at the interface due to the small size of the circular patch and the large difference of the barrier height between Ti and Au.
Journal of Applied Physics | 1997
Carl-Mikael Zetterling; Mikael Östling; K. Wongchotigul; Michael G. Spencer; X. Tang; Christopher Harris; N. Nordell; S. Simon Wong
Undoped single crystalline aluminum nitride films were grown on 4H and 6H SiC substrates using metal–organic chemical-vapor deposition at 1200 °C. From in situ reflection high-energy electron diffraction, x-ray diffraction rocking curves, and cathodoluminescence spectra, the crystallinity of the films was confirmed. Atomic force microscopy showed that some films were substantially dominated by island growth, rather than step flow growth. Aluminum was evaporated to form metal–insulator–semiconductor (MIS) capacitors for high-frequency capacitance voltage measurements carried out at room temperature. Low leakage made it possible to measure the structures and characterize accumulation, depletion, deep depletion, and, in some cases, inversion. From independent optical thickness measurements, the relative dielectric constant of aluminum nitride was confirmed at 8.4. The flatband voltage of the AlN MIS capacitors on p-type SiC was close to the theoretical value expected. The films were stressed up to 60 V (3 MV...
IEEE Electron Device Letters | 2005
Martin Domeij; Hyung-Seok Lee; Erik Danielsson; Carl-Mikael Zetterling; Mikael Östling; Adolf Schöner
This paper reports the fabrication of epitaxial 4H-SiC bipolar junction transistors (BJTs) with a maximum current gain /spl beta/=64 and a breakdown voltage of 1100 V. The high /spl beta/ value is attributed to high material quality obtained after a continuous epitaxial growth of the base-emitter junction. The BJTs show a clear emitter-size effect indicating that surface recombination has a significant influence on /spl beta/. A minimum distance of 2-3 /spl mu/m between the emitter edge and base contact implant was found adequate to avoid a substantial /spl beta/ reduction.
IEEE Electron Device Letters | 2013
Luigia Lanni; Bengt Gunnar Malm; Mikael Östling; Carl-Mikael Zetterling
Successful operation of low-voltage 4H-SiC n-p-n bipolar transistors and digital integrated circuits based on emitter coupled logic is reported from -40 °C to 500 °C. Nonmonotonous temperature dependence (previously predicted by simulations but now measured) was observed for the transistor current gain; in the range -40 °C-300 °C it decreased when the temperature increased, while it increased in the range 300 °C-500 °C. Stable noise margins of ~ 1 V were measured for a 2-input OR/NOR gate operated on -15 V supply voltage from 0 °C to 500 °C for both OR and NOR output.
Journal of Vacuum Science and Technology | 2001
H. Cho; K. P. Lee; P. Leerungnawarat; S. N. G. Chu; F. Ren; S. J. Pearton; Carl-Mikael Zetterling
Throughwafer vias up to 100 μm deep were formed in 4H-SiC substrates by inductively coupled plasma etching with SF6/O2 at a controlled rate of ∼0.6 μm min−1 and use of Al masks. Selectivities of >50 for SiC over Al were achieved. Electrical (capacitance–voltage: current–voltage) and chemical (Auger electron spectroscopy) analysis techniques showed that the etching produced only minor changes in reverse breakdown voltage, Schottky barrier height, and near surface stoichiometry of the SiC and had high selectivity over common frontside metallization. The SiC etch rate was a strong function of the incident ion energy during plasma exposure. This process is attractive for power SiC transistors intended for high current, high temperature applications and also for SiC micromachining.
IEEE Transactions on Electron Devices | 2010
Benedetto Buono; Reza Ghandi; Martin Domeij; Bengt Gunnar Malm; Carl-Mikael Zetterling; Mikael Östling
Accurate physical modeling has been developed to describe the current gain of silicon carbide (SiC) power bipolar junction transistors (BJTs), and the results have been compared with measurements. Interface traps between SiC and SiO2 have been used to model the surface recombination by changing the trap profile, capture cross section, and concentration. The best agreement with measurement is obtained using one single energy level at 1 eV above the valence band, a capture cross section of 1 × 10-5 cm2, and a trap concentration of 2 × 1012 cm-2. Simulations have been performed at different temperatures to validate the model and characterize the temperature behavior of SiC BJTs. An analysis of the carrier concentration at different collector currents has been performed in order to describe the mechanisms of the current gain fall-off at a high collector current both at room temperature and high temperatures. At room temperature, high injection in the base (which has a doping concentration of 3 × 1017 cm-3) and forward biasing of the base-collector junction occur simultaneously, causing an abrupt drop of the current gain. At higher temperatures, high injection in the base is alleviated by the higher ionization degree of the aluminum dopants, and then forward biasing of the base-collector junction is the acting mechanism for the current gain fall-off. Forward biasing of the base-collector junction can also explain the reduction of the knee current with increasing temperature by means of the negative temperature dependence of the mobility.
Applied Physics Letters | 2000
Hyun Cho; P. Leerungnawarat; David C. Hays; S. J. Pearton; S. N. G. Chu; R. M. Strong; Carl-Mikael Zetterling; Mikael Östling; F. Ren
The Schottky barrier height (Phi(B)) and reverse breakdown voltage (V-B) of Au/n-SiC diodes were used to examine the effect of inductively coupled plasma SF6/O-2 discharges on the near-surface elec ...