Katia Fecchi
Istituto Superiore di Sanità
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katia Fecchi.
Journal of Cell Science | 2006
Alessia Calzolari; Carla Raggi; Silvia Deaglio; Nadia Maria Sposi; Marit Hallvardsdotter Stafsnes; Katia Fecchi; Isabella Parolini; Fabio Malavasi; Cesare Peschle; Massimo Sargiacomo; Ugo Testa
Transferrin receptor 2 (TfR2) possesses a YQRV motif similar to the YTRF motif of transferrin receptor 1 (TfR1) responsible for the internalization and secretion through the endosomal pathway. Raft biochemical dissection showed that TfR2 is a component of the low-density Triton-insoluble (LDTI) plasma membrane domain, able to co-immunoprecipitate with caveolin-1 and CD81, two structural raft proteins. In addition, subcellular fractionation experiments showed that TfR1, which spontaneously undergoes endocytosis and recycling, largely distributed to intracellular organelles, whereas TfR2 was mainly associated with the plasma membrane. Given the TfR2 localization in lipid rafts, we tested its capability to activate cell signalling. Interaction with an anti-TfR2 antibody or with human or bovine holotransferrin showed that it activated ERK1/ERK2 and p38 MAP kinases. Integrity of lipid rafts was required for MAPK activation. Co-localization of TfR2 with CD81, a raft tetraspanin exported through exosomes, prompted us to investigate exosomes released by HepG2 and K562 cells into culture medium. TfR2, CD81 and to a lesser extent caveolin-1, were found to be part of the exosomal budding vesicles. In conclusion, the present study indicates that TfR2 localizes in LDTI microdomains, where it promotes cell signalling, and is exported out of the cells through the exosome pathway, where it acts as an intercellular messenger.
Journal of Virology | 2002
Mathias Viard; Isabella Parolini; Massimo Sargiacomo; Katia Fecchi; Carlo Ramoni; Sherimay D. Ablan; Francis W. Ruscetti; Ji Ming Wang; Robert Blumenthal
ABSTRACT In this study we examined the effects of target membrane cholesterol depletion and cytoskeletal changes on human immunodeficiency virus type 1 (HIV-1) Env-mediated membrane fusion by dye redistribution assays. We found that treatment of peripheral blood lymphocytes (PBL) with methyl-β-cyclodextrin (MβCD) or cytochalasin reduced their susceptibility to membrane fusion with cells expressing HIV-1 Env that utilize CXCR4 or CCR5. However, treatment of human osteosarcoma (HOS) cells expressing high levels of CD4 and coreceptors with these agents did not affect their susceptibility to HIV-1 Env-mediated membrane fusion. Removal of cholesterol inhibited stromal cell-derived factor-1α- and macrophage inflammatory protein 1β-induced chemotaxis of both PBL and HOS cells expressing CD4 and coreceptors. The fusion activity as well as the chemotactic activity of PBL was recovered by adding back cholesterol to these cells. Confocal laser scanning microscopy analysis indicated that treatment of lymphocytes with MβCD reduced the colocalization of CD4 or of CXCR4 with actin presumably in microvilli. These findings indicate that, although cholesterol is not required for HIV-1 Env-mediated membrane fusion per se, its depletion from cells with relatively low coreceptor densities reduces the capacity of HIV-1 Env to engage coreceptor clusters required to trigger fusion. Furthermore, our results suggest that coreceptor clustering may occur in microvilli that are supported by actin polymerization.
International Journal of Cancer | 2009
Federica Felicetti; Isabella Parolini; Lisabianca Bottero; Katia Fecchi; Maria Cristina Errico; Carla Raggi; Mauro Biffoni; Francesca Spadaro; Michael P. Lisanti; Massimo Sargiacomo; Alessandra Carè
Caveolin‐1 (Cav‐1), a member of the caveolin family, regulates caveolae‐associated signaling proteins, which are involved in many biological processes, including cancer development. Cav‐1 was found to exert a complex and ambiguous role as oncogene or tumor suppressor depending on the cellular microenvironment. Here we investigated Cav‐1 expression and function in a panel of melanomas, finding its expression in all the cell lines. The exception was the primary vertical melanoma cell line, WM983A, characterized by the lack of Cav‐1, and then utilized as a recipient for Cav‐1 gene transduction to address a series of functional studies. The alleged yet controversial role of phospho (Ph)‐Cav‐1 on cell regulation was also tested by transducing the nonphosphorylatable Cav‐1Y14A mutant. Wild‐type Cav‐1, but not mutated Cav‐1Y14A, increased tumorigenicity as indicated by enhanced proliferation, migration, invasion and capacity of forming foci in semisolid medium. Accordingly, Cav‐1 silencing inhibited melanoma cell growth reducing some of the typical traits of malignancy. Finally, we detected a secreted fraction of Cav‐1 associated with cell released microvesicular particles able to stimulate in vitro anchorage independence, migration and invasion in a paracrine/autocrine fashion and, more important, competent to convey metastatic asset from the donor melanoma to the less aggressive recipient cell line. A direct correlation between Cav‐1 levels, the amount of microvesicles released in the culture medium and MMP‐9 expression was also observed.
Biochimica et Biophysica Acta | 2010
Fiorella Malchiodi-Albedi; Valentina Contrusciere; Carla Raggi; Katia Fecchi; Gabriella Rainaldi; Silvia Paradisi; Andrea Matteucci; Maria Teresa Santini; Massimo Sargiacomo; Claudio Frank; Maria Cristina Gaudiano; Marco Diociaiuti
A specific neuronal vulnerability to amyloid protein toxicity may account for brain susceptibility to protein misfolding diseases. To investigate this issue, we compared the effects induced by oligomers from salmon calcitonin (sCTOs), a neurotoxic amyloid protein, on cells of different histogenesis: mature and immature primary hippocampal neurons, primary astrocytes, MG63 osteoblasts and NIH-3T3 fibroblasts. In mature neurons, sCTOs increased apoptosis and induced neuritic and synaptic damages similar to those caused by amyloid beta oligomers. Immature neurons and the other cell types showed no cytotoxicity. sCTOs caused cytosolic Ca(2+) rise in mature, but not in immature neurons and the other cell types. Comparison of plasma membrane lipid composition showed that mature neurons had the highest content in lipid rafts, suggesting a key role for them in neuronal vulnerability to sCTOs. Consistently, depletion in gangliosides protected against sCTO toxicity. We hypothesize that the high content in lipid rafts makes mature neurons especially vulnerable to amyloid proteins, as compared to other cell types; this may help explain why the brain is a target organ for amyloid-related diseases.
Glycoconjugate Journal | 2003
Mathias Viard; Isabella Parolini; Satinder S. Rawat; Katia Fecchi; Massimo Sargiacomo; Anu Puri; Robert Blumenthal
Although HIV uses CD4 and coreceptors (CCR5 and CXCR4) for productive infection of T cells, glycosphingolipids (GSL) may play ancillary roles in lymphoid and non-lymphoid cells. Interactions of the HIV Envelope Glycoprotein (Env) with GSL may help HIV in various steps of its pathogenesis. Physical-chemical aspects of the interactions between HIV Env and GSL leading to CD4-dependent entry into lymphocytes, the role of GSL in HIV transcytosis, and CD4-independent entry into non-lymphoid cells are reviewed. An overview of signaling properties of HIV receptors is provided with some speculation on how GSL may play a role in these events by virtue of being in membrane rafts. Finally, we summarize how interactions between HIV and coreceptors leading to signaling and/or fusion can be analyzed by the use of various tyrosine kinase and cytoskeletal inhibitors. Published in 2004.
PLOS ONE | 2012
Giovanni Sette; Valentina Salvati; Lorenzo Memeo; Katia Fecchi; Cristina Colarossi; Paola Di Matteo; Michele Signore; Mauro Biffoni; Vito D’Andrea; Enrico De Antoni; Vincenzo Canzonieri; Ruggero De Maria; Adriana Eramo
Background Tumor cells with stem-like phenotype and properties, known as cancer stem cells (CSC), have been identified in most solid tumors and are presumed to be responsible for driving tumor initiation, chemoresistance, relapse, or metastasis. A subpopulation of cells with increased stem-like potential has also been identified within sarcomas. These cells are endowed with increased tumorigenic potential, chemoresistance, expression of embryonic markers, and side population(SP) phenotype. Leiomyosarcomas (LMS) are soft tissue sarcomas presumably arising from undifferentiated cells of mesenchymal origin, the Mesenchymal Stem Cells (MSC). Frequent recurrence of LMS and chemoresistance of relapsed patients may likely result from the failure to target CSC. Therefore, therapeutic cues coming from the cancer stem cell (CSC) field may drastically improve patient outcome. Methodology/Principal Findings We expanded LMS stem-like cells from patient samples in vitro and examined the possibility to counteract LMS malignancy through a stem-like cell effective approach. LMS stem-like cells were in vitro expanded both as “tumor spheres” and as “monolayers” in Mesenchymal Stem Cell (MSC) conditions. LMS stem-like cells displayed MSC phenotype, higher SP fraction, and increased drug-extrusion, extended proliferation potential, self-renewal, and multiple differentiation ability. They were chemoresistant, highly tumorigenic, and faithfully reproduced the patient tumor in mice. Such cells displayed activation of EGFR/AKT/MAPK pathways, suggesting a possibility in overcoming their chemoresistance through EGFR blockade. IRESSA plus Vincristine treatment determined pathway inactivation, impairment of SP phenotype, high cytotoxicity in vitro and strong antitumor activity in stem-like cell-generated patient-like xenografts, targeting both stem-like and differentiated cells. Conclusions/Significance EGFR blockade combined with vincristine determines stem-like cell effective antitumor activity in vitro and in vivo against LMS, thus providing a potential therapy for LMS patients.
Cell Death and Disease | 2015
Giovanni Sette; Valentina Salvati; Marcella Mottolese; P Visca; Enzo Gallo; Katia Fecchi; Emanuela Pilozzi; Enrico Duranti; Eleonora Policicchio; Marco Tartaglia; Michele Milella; R De Maria; Adriana Eramo
Tyrosine kinase inhibitors (TKIs) have shown strong activity against non-small-cell lung cancer (NSCLC) patients harboring activating epidermal growth factor receptor (EGFR) mutations. However, a fraction of EGFR wild-type (WT) patients may have an improvement in terms of response rate and progression-free survival when treated with erlotinib, suggesting that factors other than EGFR mutation may lead to TKI sensitivity. However, at present, no sufficiently robust clinical or biological parameters have been defined to identify WT-EGFR patients with greater chances of response. Therapeutics validation has necessarily to focus on lung cancer stem cells (LCSCs) as they are more difficult to eradicate and represent the tumor-maintaining cell population. Here, we investigated erlotinib response of lung CSCs with WT-EGFR and identified EGFR phosphorylation at tyrosine1068 (EGFRtyr1068) as a powerful biomarker associated with erlotinib sensitivity both in vitro and in preclinical CSC-generated xenografts. In contrast to the preferential cytotoxicity of chemotherapy against the more differentiated cells, in EGFRtyr1068 cells, erlotinib was even more active against the LCSCs compared with their differentiated counterpart, acquiring potential value as CSC-directed therapeutics in the context of WT-EGFR lung cancer. Although tumor growth was inhibited to a similar extent during erlotinib or chemotherapy administration to responsive tumors, erlotinib proved superior to chemotherapy in terms of higher tolerability and reduced tumor aggressiveness after treatment suspension, substantiating the possibility of preferential LCSC targeting, both in adenocarcinoma (ADC) and squamous cell carcinoma (SCC) tumors. We conclude that EGFRtyr1068 may represent a potential candidate biomarker predicting erlotinib response at CSC-level in EGFR-WT lung cancer patients. Finally, besides its invariable association with erlotinib sensitivity in EGFR-WT lung CSCs, EGFRtyr1068 was associated with EGFR-sensitizing mutations in cell lines and patient tumors, with relevant diagnostic, clinical and therapeutic implications.
Journal of Experimental & Clinical Cancer Research | 2013
Giovanni Sette; Katia Fecchi; Valentina Salvati; Fiorenza Lotti; Emanuela Pilozzi; Enrico Duranti; Mauro Biffoni; Alfredo Pagliuca; Daniela Martinetti; Lorenzo Memeo; Michele Milella; Ruggero De Maria; Adriana Eramo
One of the key oncogenic pathways involved in melanoma aggressiveness, development and progression is the RAS/BRAF/MEK pathway, whose alterations are found in most patients. These molecular anomalies are promising targets for more effective anti-cancer therapies. Some Mek inhibitors showed promising antitumor activity, although schedules and doses associated with low systemic toxicity need to be defined. In addition, it is now accepted that cancers can arise from and be maintained by the cancer stem cells (CSC) or tumor-initiating cells (TIC), commonly expanded in vitro as tumorspheres from several solid tumors, including melanoma (melanospheres). Here, we investigated the potential targeting of MEK pathway by exploiting highly reliable in vitro and in vivo pre-clinical models of melanomas based on melanospheres, as melanoma initiating cells (MIC) surrogates. MEK inhibition, through PD0325901, provided a successful strategy to affect survival of mutated-BRAF melanospheres and growth of wild type-BRAF melanospheres. A marked citotoxicity was observed in differentated melanoma cells regardless BRAF mutational status. PD0325901 treatment, dramatically inhibited growth of melanosphere-generated xenografts and determined impaired tumor vascularization of both mutated- and wild type-BRAF tumors, in the absence of mice toxicity. These results suggest that MEK inhibition might represent a valid treatment option for patients with both mutated- or wild type-BRAF melanomas, affecting tumor growth through multiple targets.
Journal of Molecular and Cellular Cardiology | 2008
Mario Patrizio; Valerio Vago; Marco Musumeci; Katia Fecchi; Nadia Maria Sposi; Elisabetta Mattei; Liviana Catalano; Tonino Stati; Giuseppe Marano
The treatment with beta-blockers causes an enhancement of the norepinephrine-induced fetal gene response in cultured cardiomyocytes. Here, we tested whether the activation of cAMP-mediated beta-adrenergic signaling antagonizes alpha(1)-adrenergic receptor (AR)-mediated fetal gene response. To address this question, the fetal gene program, of which atrial natriuretic peptide (ANP) and the beta-isoform of myosin heavy chain are classical members, was induced by phenylephrine (PE), an alpha(1)-AR agonist. In cultured neonatal rat cardiomyocytes, we found that stimulation of beta-ARs with isoproterenol, a beta-AR agonist, inhibited the fetal gene expression induced by PE. Similar results were also observed when cardiomyocytes were treated with forskolin (FSK), a direct activator of adenylyl cyclase, or 8-CPT-6-Phe-cAMP, a selective activator of protein kinase A (PKA). Conversely, the PE-induced fetal gene expression was further upregulated by H89, a selective PKA inhibitor. To evaluate whether these results could be generalized to Gq-mediated signaling and not specifically to alpha(1)-ARs, cardiomyocytes were treated with prostaglandin F(2)alpha, another Gq-coupled receptor agonist, which is able to promote fetal gene expression. This treatment caused an increase of both ANP mRNA and protein levels, which was almost completely abolished by FSK treatment. The capability of beta-adrenergic signaling to regulate the fetal gene expression was also evaluated in vivo conditions by using beta1- and beta2-AR double knockout mice, in which the predominant cardiac beta-AR subtypes are lacking, or by administering isoproterenol (ISO), a beta-AR agonist, at a subpressor dose. A significant increase of the fetal gene expression was found in beta(1)- and beta(2)-AR gene deficient mice. Conversely, we found that ANP, beta-MHC and skACT mRNA levels were significantly decreased in ISO-treated hearts. Collectively, these data indicate that cAMP-mediated beta-adrenergic signaling negatively regulates Gq cascade activation-induced fetal gene expression in cultured cardiomyocytes and that this inhibitory regulation is already operative in the mouse heart under physiological conditions.
European Journal of Pharmacology | 2008
Mario Patrizio; Marco Musumeci; Tonino Stati; Katia Fecchi; Elisabetta Mattei; Liviana Catalano; Giuseppe Marano
Recent research has revealed that propranolol, a beta-adrenoceptor antagonist, causes extracellular signal-regulated kinase (ERK) cascade activation, nuclear translocation of phospho-ERK and increased transcriptional activity in cultured cell lines. Given the importance of beta-adrenoceptor antagonists in the treatment of heart failure, we evaluated the capability of propranolol of promoting the ERK-dependent gene expression at the cardiomyocyte level. To this end, the gene expression of the early growth response factor 1 (Egr1), a well-recognized indicator of nuclear extracellular signal-regulated kinase 1/2 (ERK1/2) activation, was assessed by quantitative real-time RT-PCR in vivo as well as in vitro experiments. Propranolol, administered at the dose of 10 mg/kg/day in C57BL/6 mice, caused a approximately 19-fold increase of Egr1 mRNA expression in left ventricular myocardium along with a approximately 2.1-fold increase of Egr1 protein expression. Isoproterenol, a nonselective beta-adrenoceptor agonist, also increased Egr1 mRNA and protein expression but to a lesser degree. Remarkably, isoproterenol administration was associated with the development of cardiac hypertrophy, whereas propranolol-treated mice showed a completely normal cardiac morphology. The effect of propranolol on Egr1 mRNA expression was abrogated in mice lacking beta(1)- and beta(2)-adrenoceptors indicating that propranolol increases Egr1 mRNA expression in a beta-adrenoceptor-dependent manner. The role of beta-adrenoceptors was further confirmed by showing that propranolol was able to increase Egr1 mRNA and protein levels in cultured neonatal cardiomyocytes. Collectively, these results indicate that propranolol promotes Egr1 gene expression in cardiomyocytes via beta-adrenoceptors with a mechanism which is independent of its ability to antagonize the effects of catecholamines. It is also suggested that cardiomyocyte growth and Egr1 gene overexpression are not obligate processes.