Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabella Parolini is active.

Publication


Featured researches published by Isabella Parolini.


Journal of Biological Chemistry | 2009

Microenvironmental pH is a key factor for exosome traffic in tumor cells.

Isabella Parolini; Cristina Federici; Carla Raggi; Luana Lugini; Simonetta Palleschi; Angelo De Milito; Carolina Coscia; Elisabetta Iessi; Mariantonia Logozzi; Agnese Molinari; Marisa Colone; Massimo Tatti; Massimo Sargiacomo; Stefano Fais

Exosomes secreted by normal and cancer cells carry and deliver a variety of molecules. To date, mechanisms referring to tumor exosome trafficking, including release and cell-cell transmission, have not been described. To gain insight into this, exosomes purified from metastatic melanoma cell medium were labeled with a lipid fluorescent probe, R18, and analyzed by spectrofluorometry and confocal microscopy. A low pH condition is a hallmark of tumor malignancy, potentially influencing exosome release and uptake by cancer cells. Using different pH conditions as a modifier of exosome traffic, we showed (i) an increased exosome release and uptake at low pH when compared with a buffered condition and (ii) exosome uptake by melanoma cells occurred by fusion. Membrane biophysical analysis, such as fluidity and lipid composition, indicated a high rigidity and sphingomyelin/ganglioside GM3 (N-acetylneuraminylgalactosylglucosylceramide) content in exosomes released at low pH. This was likely responsible for the increased fusion efficiency. Consistent with these results, pretreatment with proton pump inhibitors led to an inhibition of exosome uptake by melanoma cells. Fusion efficiency of tumor exosomes resulted in being higher in cells of metastatic origin than in those derived from primary tumors or normal cells. Furthermore, we found that caveolin-1, a protein involved in melanoma progression, is highly delivered through exosomes released in an acidic condition. The results of our study provide the evidence that exosomes may be used as a delivery system for paracrine diffusion of tumor malignancy, in turn supporting the importance of both exosomes and tumor pH as key targets for future anti-cancer strategies.


European Journal of Immunology | 2001

Organization of plasma membrane functional rafts upon T cell activation.

Loretta Tuosto; Isabella Parolini; Susanne Schröder; Massimo Sargiacomo; Antonio Lanzavecchia; Antonella Viola

Raft microdomains have been shown to play a key role in T cell activation. We found that in human T lymphocytes the formation of functional rafts at the plasma membrane was induced by T cell priming. In resting T cells from peripheral blood Lck and the raft glycosphingolipid GM1 resided in intracellular membranes. T cell activation induced synthesis of GM1 and effector cells showed very high levels of this lipid, which became predominantly plasma membrane associated. TCR triggering also induced targeting of the cytosolic Lck to the plasma membrane. Thus, effector cells acquire an improved signaling machinery by increasing the amount of rafts at the plasma membrane. The fact that, when compared with naive T cells, memory T cells showed higher GM1 levels suggests that raft lipid synthesis may be developmentally regulated and tune T cell responsiveness.


Journal of Cell Science | 2006

TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway.

Alessia Calzolari; Carla Raggi; Silvia Deaglio; Nadia Maria Sposi; Marit Hallvardsdotter Stafsnes; Katia Fecchi; Isabella Parolini; Fabio Malavasi; Cesare Peschle; Massimo Sargiacomo; Ugo Testa

Transferrin receptor 2 (TfR2) possesses a YQRV motif similar to the YTRF motif of transferrin receptor 1 (TfR1) responsible for the internalization and secretion through the endosomal pathway. Raft biochemical dissection showed that TfR2 is a component of the low-density Triton-insoluble (LDTI) plasma membrane domain, able to co-immunoprecipitate with caveolin-1 and CD81, two structural raft proteins. In addition, subcellular fractionation experiments showed that TfR1, which spontaneously undergoes endocytosis and recycling, largely distributed to intracellular organelles, whereas TfR2 was mainly associated with the plasma membrane. Given the TfR2 localization in lipid rafts, we tested its capability to activate cell signalling. Interaction with an anti-TfR2 antibody or with human or bovine holotransferrin showed that it activated ERK1/ERK2 and p38 MAP kinases. Integrity of lipid rafts was required for MAPK activation. Co-localization of TfR2 with CD81, a raft tetraspanin exported through exosomes, prompted us to investigate exosomes released by HepG2 and K562 cells into culture medium. TfR2, CD81 and to a lesser extent caveolin-1, were found to be part of the exosomal budding vesicles. In conclusion, the present study indicates that TfR2 localizes in LDTI microdomains, where it promotes cell signalling, and is exported out of the cells through the exosome pathway, where it acts as an intercellular messenger.


Journal of Virology | 2002

Role of Cholesterol in Human Immunodeficiency Virus Type 1 Envelope Protein-Mediated Fusion with Host Cells

Mathias Viard; Isabella Parolini; Massimo Sargiacomo; Katia Fecchi; Carlo Ramoni; Sherimay D. Ablan; Francis W. Ruscetti; Ji Ming Wang; Robert Blumenthal

ABSTRACT In this study we examined the effects of target membrane cholesterol depletion and cytoskeletal changes on human immunodeficiency virus type 1 (HIV-1) Env-mediated membrane fusion by dye redistribution assays. We found that treatment of peripheral blood lymphocytes (PBL) with methyl-β-cyclodextrin (MβCD) or cytochalasin reduced their susceptibility to membrane fusion with cells expressing HIV-1 Env that utilize CXCR4 or CCR5. However, treatment of human osteosarcoma (HOS) cells expressing high levels of CD4 and coreceptors with these agents did not affect their susceptibility to HIV-1 Env-mediated membrane fusion. Removal of cholesterol inhibited stromal cell-derived factor-1α- and macrophage inflammatory protein 1β-induced chemotaxis of both PBL and HOS cells expressing CD4 and coreceptors. The fusion activity as well as the chemotactic activity of PBL was recovered by adding back cholesterol to these cells. Confocal laser scanning microscopy analysis indicated that treatment of lymphocytes with MβCD reduced the colocalization of CD4 or of CXCR4 with actin presumably in microvilli. These findings indicate that, although cholesterol is not required for HIV-1 Env-mediated membrane fusion per se, its depletion from cells with relatively low coreceptor densities reduces the capacity of HIV-1 Env to engage coreceptor clusters required to trigger fusion. Furthermore, our results suggest that coreceptor clustering may occur in microvilli that are supported by actin polymerization.


Journal of Biological Chemistry | 1999

Porin Is Present in the Plasma Membrane Where It Is Concentrated in Caveolae and Caveolae-related Domains

György Báthori; Isabella Parolini; Francesco Tombola; Ildikò Szabò; Angela Messina; Marta Oliva; Vito De Pinto; Michael P. Lisanti; Massimo Sargiacomo; Mario Zoratti

Mitochondrial porin, or voltage-dependent anion channel, is a pore-forming protein first discovered in the outer mitochondrial membrane. Later investigations have provided indications for its presence also in other cellular membranes, including the plasma membrane, and in caveolae. This extra-mitochondrial localization is debated and no clear-cut conclusion has been reached up to now. In this work, we used biochemical and electrophysiological techniques to detect and characterize porin within isolated caveolae and caveolae-like domains (low density Triton-insoluble fractions). A new procedure was used to isolate porin from plasma membrane. The outer surface of cultured CEM cells was biotinylated by an impermeable reagent. Low density Triton-insoluble fractions were prepared from the labeled cells and used as starting material to purify a biotinylated protein with the same electrophoretic mobility and immunoreactivity of mitochondrial porin. In planar bilayers, the porin from these sources formed slightly anion-selective pores with properties indistinguishable from those of mitochondrial porin. This work thus provides a strong indication of the presence of porin in the plasma membrane, and specifically in caveolae and caveolae-like domains.


European Journal of Immunology | 2004

CD95 death-inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells

Adriana Eramo; Massimo Sargiacomo; Lucia Ricci-Vitiani; Matilde Todaro; Giorgio Stassi; Carlo Messina; Isabella Parolini; Fiorenza Lotti; Giovanni Sette; Cesare Peschle; Ruggero De Maria

We investigated the membrane localization of CD95 in type I and type II cells, which differ in their ability to recruit and activate caspase‐8. We found that CD95 was preferentially located inlipid rafts of type I cells, while it was present both in raft and non‐raft plasma membrane sub‐domains of type II cells. After stimulation, CD95 located in phospholipid‐rich plasma membrane was recruited to lipid rafts in both types of cells. Similarly, CD95 cross‐linking resulted in caspase‐independent translocation of FADD/MORT1 and caspase‐8 to the lipid rafts, which was prevented by a death domain‐defective receptor. CD95 internalization was then rapid in type I and delayed in type II cells and showed a substantial correlation with the kinetics of Fas‐associated death domain (FADD)and caspase‐8 recruitment to lipid rafts. Finally, electron microscopy analysis showed that after CD95 stimulation lipid rafts aggregated in large clusters that were internalized in endosomal vesicles, where caspase‐8 underwent massive processing. Taken together, our data demonstrate that CD95 death‐inducing signaling complex formation and internalization in type I and type II cells occur in lipidrafts, which are a major site of caspase‐8 activation.


Journal of Biological Chemistry | 1999

Phorbol ester-induced disruption of the CD4-Lck complex occurs within a detergent-resistant microdomain of the plasma membrane. Involvement of the translocation of activated protein kinase C isoforms.

Isabella Parolini; Stefania Topa; Maurizio Sorice; Alberto Pace; Piergiuseppe Ceddia; Elisabetta Montesoro; Antonio Pavan; Michael P. Lisanti; Cesare Peschle; Massimo Sargiacomo

Recent studies have highlighted the existence of discrete microdomains at the cell surface that are distinct from caveolae. The function of these microdomains remains unknown. However, recent evidence suggests that they may participate in a subset of transmembrane signaling events. In hematopoietic cells, these low density Triton-insoluble (LDTI) microdomains (also called caveolae-related domains) are dramatically enriched in signaling molecules, such as cell surface receptors (CD4 and CD55), Src family tyrosine kinases (Lyn, Lck, Hck, and Fyn), heterotrimeric G proteins, and gangliosides (GM1 and GM3). Human T lymphocytes have become a well established model system for studying the process of phorbol ester-induced down-regulation of CD4. Here, we present evidence that phorbol 12-myristate 13-acetate (PMA)-induced down-regulation of the cell surface pool of CD4 occurs within the LDTI microdomains of T cells. Localization of CD4 in LDTI microdomains was confirmed by immunoelectron microscopy. PMA-induced disruption of the CD4-Lck complex was rapid (within 5 min), and this disruption occurred within LDTI microdomains. Because PMA is an activator of protein kinase C (PKC), we next evaluated the possible roles of different PKC isoforms in this process. Our results indicate that PMA induced the rapid translocation of cytosolic PKCs to LDTI microdomains. We identified PKCα as the major isoform involved in this translocation event. Taken together, our results support the hypothesis that LDTI microdomains represent a functionally important plasma membrane compartment in T cells.


International Journal of Cancer | 2009

Caveolin-1 tumor-promoting role in human melanoma

Federica Felicetti; Isabella Parolini; Lisabianca Bottero; Katia Fecchi; Maria Cristina Errico; Carla Raggi; Mauro Biffoni; Francesca Spadaro; Michael P. Lisanti; Massimo Sargiacomo; Alessandra Carè

Caveolin‐1 (Cav‐1), a member of the caveolin family, regulates caveolae‐associated signaling proteins, which are involved in many biological processes, including cancer development. Cav‐1 was found to exert a complex and ambiguous role as oncogene or tumor suppressor depending on the cellular microenvironment. Here we investigated Cav‐1 expression and function in a panel of melanomas, finding its expression in all the cell lines. The exception was the primary vertical melanoma cell line, WM983A, characterized by the lack of Cav‐1, and then utilized as a recipient for Cav‐1 gene transduction to address a series of functional studies. The alleged yet controversial role of phospho (Ph)‐Cav‐1 on cell regulation was also tested by transducing the nonphosphorylatable Cav‐1Y14A mutant. Wild‐type Cav‐1, but not mutated Cav‐1Y14A, increased tumorigenicity as indicated by enhanced proliferation, migration, invasion and capacity of forming foci in semisolid medium. Accordingly, Cav‐1 silencing inhibited melanoma cell growth reducing some of the typical traits of malignancy. Finally, we detected a secreted fraction of Cav‐1 associated with cell released microvesicular particles able to stimulate in vitro anchorage independence, migration and invasion in a paracrine/autocrine fashion and, more important, competent to convey metastatic asset from the donor melanoma to the less aggressive recipient cell line. A direct correlation between Cav‐1 levels, the amount of microvesicles released in the culture medium and MMP‐9 expression was also observed.


Journal of Bioenergetics and Biomembranes | 2000

Extramitochondrial porin: Facts and hypotheses

György Báthori; Isabella Parolini; Ildikò Szabò; Francesco Tombola; Angela Messina; Marta Oliva; Massimo Sargiacomo; Vito De Pinto; Mario Zoratti

Mitochondrial porin, or VDAC, is a pore-forming protein abundant in the outer mitochondrialmembrane. Several publications have reported extramitochondrial localizations as well, butthe evidence was considered insufficient by many, and the presence of porin in nonmitochondrialcellular compartments has remained in doubt for a long time. We have now obtained newdata indicating that the plasma membrane of hematopoietic cells contains porin, probablylocated mostly in caveolae or caveolae-like domains. Porin was purified from the plasmamembrane of intact cells by a procedure utilizing the membrane-impermeable labeling reagentNH-SS-biotin and streptavidin affinity chromatography, and shown to have the same propertiesas mitochondrial porin. A channel with properties similar to that of isolated VDAC wasobserved by patch-clamping intact cells. This review discusses the evidence supportingextramitochondrial localization, the putative identification of the plasma membrane porin with the“maxi” chloride channel, the hypothetical mechanisms of sorting porin to various cellularmembrane structures, and its possible functions.


Journal of Cell Science | 2006

Inhibition of TPO-induced MEK or mTOR activity induces opposite effects on the ploidy of human differentiating megakaryocytes

Raffaella Guerriero; Isabella Parolini; Ugo Testa; Paola Samoggia; Eleonora Petrucci; Massimo Sargiacomo; Cristiana Chelucci; Marco Gabbianelli; Cesare Peschle

The megakaryocyte is a paradigm for mammalian polyploid cells. However, the mechanisms underlying megakaryocytic polyploidization have not been elucidated. In this study, we investigated the role of Shc-Ras-MAPK and PI3K-AKT-mTOR pathways in promoting megakaryocytic differentiation, maturation and polyploidization. CD34+ cells, purified from human peripheral blood, were induced in serum-free liquid suspension culture supplemented with thrombopoietin (TPO) to differentiate into a virtually pure megakaryocytic progeny (97-99% CD61+/CD41+ cells). The early and repeated addition to cell cultures of low concentrations of PD98059, an inhibitor of MEK1/2 activation, gave rise to a population of large megakaryocytes showing an increase in DNA content and polylobated nuclei (from 45% to 70% in control and treated cultures, respectively). Conversely, treatment with the mTOR inhibitor rapamycin strongly inhibited cell polyploidization, as compared with control cultures. Western blot analysis of PD98059-treated progenitor cells compared with the control showed a downmodulation of phospho-ERK 1 and phospho-ERK 2 and a minimal influence on p70S6K activation; by contrast, p70S6K activation was completely inhibited in rapamycin-treated cells. Interestingly, the cyclin D3 localization was nuclear in PD98059-induced polyploid megakaryocytes, whereas it was completely cytoplasmic in those treated with rapamycin. Altogether, our results are in line with a model in which binding of TPO to the TPO receptor (mpl) could activate the rapamycin-sensitive PI3K-AKT-mTOR-p70S6K pathway and its downstream targets in promoting megakaryocytic cell polyploidization.

Collaboration


Dive into the Isabella Parolini's collaboration.

Top Co-Authors

Avatar

Massimo Sargiacomo

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Cesare Peschle

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Ugo Testa

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Katia Fecchi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Carla Raggi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Elvira Pelosi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Paola Samoggia

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Alessandra Carè

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Federica Felicetti

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Marco Gabbianelli

Istituto Superiore di Sanità

View shared research outputs
Researchain Logo
Decentralizing Knowledge