Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline Baynes is active.

Publication


Featured researches published by Caroline Baynes.


Nature Genetics | 2007

A common coding variant in CASP8 is associated with breast cancer risk

Angela Cox; Alison M. Dunning; Montserrat Garcia-Closas; Sabapathy P. Balasubramanian; Malcolm Reed; Karen A. Pooley; Serena Scollen; Caroline Baynes; Bruce A.J. Ponder; Stephen J. Chanock; Jolanta Lissowska; Louise A. Brinton; Beata Peplonska; Melissa C. Southey; John L. Hopper; Margaret McCredie; Graham G. Giles; Olivia Fletcher; Nichola Johnson; Isabel dos Santos Silva; Lorna Gibson; Stig E. Bojesen; Børge G. Nordestgaard; Christen K. Axelsson; Diana Torres; Ute Hamann; Christina Justenhoven; Hiltrud Brauch; Jenny Chang-Claude; Silke Kropp

The Breast Cancer Association Consortium (BCAC) has been established to conduct combined case-control analyses with augmented statistical power to try to confirm putative genetic associations with breast cancer. We genotyped nine SNPs for which there was some prior evidence of an association with breast cancer: CASP8 D302H (rs1045485), IGFBP3 −202 C → A (rs2854744), SOD2 V16A (rs1799725), TGFB1 L10P (rs1982073), ATM S49C (rs1800054), ADH1B 3′ UTR A → G (rs1042026), CDKN1A S31R (rs1801270), ICAM5 V301I (rs1056538) and NUMA1 A794G (rs3750913). We included data from 9–15 studies, comprising 11,391–18,290 cases and 14,753–22,670 controls. We found evidence of an association with breast cancer for CASP8 D302H (with odds ratios (OR) of 0.89 (95% confidence interval (c.i.): 0.85–0.94) and 0.74 (95% c.i.: 0.62–0.87) for heterozygotes and rare homozygotes, respectively, compared with common homozygotes; Ptrend = 1.1 × 10−7) and weaker evidence for TGFB1 L10P (OR = 1.07 (95% c.i.: 1.02–1.13) and 1.16 (95% c.i.: 1.08–1.25), respectively; Ptrend = 2.8 × 10−5). These results demonstrate that common breast cancer susceptibility alleles with small effects on risk can be identified, given sufficiently powerful studies.NOTE: In the version of this article initially published, there was an error that affected the calculations of the odds ratios, confidence intervals, between-study heterogeneity, trend test and test for association for SNP ICAM5 V301I in Table 1 (ICAM5 V301I); genotype counts in Supplementary Table 2 (ICAM5; ICR_FBCS and Kuopio studies) and minor allele frequencies, trend test and odds ratios for heterozygotes and rare homozygotes in Supplementary Table 3 (ICAM5; ICR_FBCS and Kuopio studies). The errors in Table 1 have been corrected in the PDF version of the article. The errors in supplementary information have been corrected online.


Lancet Oncology | 2012

Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: a prospective analysis study

Gillian C. Barnett; Charlotte E. Coles; Rebecca Elliott; Caroline Baynes; Craig Luccarini; Don Conroy; Jennifer S. Wilkinson; Jonathan Tyrer; Vivek Misra; Radka Platte; S. Gulliford; Matthew R. Sydes; Emma Hall; Søren M. Bentzen; David P. Dearnaley; N.G. Burnet; Paul Pharoah; Alison M. Dunning; Catharine M L West

BACKGROUND Several studies have reported associations between radiation toxicity and single nucleotide polymorphisms (SNPs) in candidate genes. Few associations have been tested in independent validation studies. This prospective study aimed to validate reported associations between genotype and radiation toxicity in a large independent dataset. METHODS 92 (of 98 attempted) SNPs in 46 genes were successfully genotyped in 1613 patients: 976 received adjuvant breast radiotherapy in the Cambridge breast IMRT trial (ISRCTN21474421, n=942) or in a prospective study of breast toxicity at the Christie Hospital, Manchester, UK (n=34). A further 637 received radical prostate radiotherapy in the MRC RT01 multicentre trial (ISRCTN47772397, n=224) or in the Conventional or Hypofractionated High Dose Intensity Modulated Radiotherapy for Prostate Cancer (CHHiP) trial (ISRCTN97182923, n=413). Late toxicity was assessed 2 years after radiotherapy with a validated photographic technique (patients with breast cancer only), clinical assessment, and patient questionnaires. Association tests of genotype with overall radiation toxicity score and individual endpoints were undertaken in univariate and multivariable analyses. At a type I error rate adjusted for multiple testing, this study had 99% power to detect a SNP, with minor allele frequency of 0·35, associated with a per allele odds ratio of 2·2. FINDINGS None of the previously reported associations were confirmed by this study, after adjustment for multiple comparisons. The p value distribution of the SNPs tested against overall toxicity score was not different from that expected by chance. INTERPRETATION We did not replicate previously reported late toxicity associations, suggesting that we can essentially exclude the hypothesis that published SNPs individually exert a clinically relevant effect. Continued recruitment of patients into studies within the Radiogenomics Consortium is essential so that sufficiently powered studies can be done and methodological challenges addressed. FUNDING Cancer Research UK, The Royal College of Radiologists, Addenbrookes Charitable Trust, Breast Cancer Campaign, Cambridge National Institute of Health Research (NIHR) Biomedical Research Centre, Experimental Cancer Medicine Centre, East Midlands Innovation, the National Cancer Institute, Joseph Mitchell Trust, Royal Marsden NHS Foundation Trust, Institute of Cancer Research NIHR Biomedical Research Centre for Cancer.


Breast Cancer Research | 2007

Common variants in the ATM, BRCA1, BRCA2, CHEK2 and TP53 cancer susceptibility genes are unlikely to increase breast cancer risk

Caroline Baynes; Catherine S. Healey; Karen A. Pooley; Serena Scollen; Robert Luben; Deborah Thompson; Paul Pharoah; Douglas F. Easton; Bruce Ponder; Alison M. Dunning

IntroductionCertain rare, familial mutations in the ATM, BRCA1, BRCA2, CHEK2 or TP53 genes increase susceptibility to breast cancer but it has not, until now, been clear whether common polymorphic variants in the same genes also increase risk.MethodsWe have attempted a comprehensive, single nucleotide polymorphism (SNP)- and haplotype-tagging association study on each of these five genes in up to 4,474 breast cancer cases from the British, East Anglian SEARCH study and 4,560 controls from the EPIC-Norfolk study, using a two-stage study design. Nine tag SNPs were genotyped in ATM, together with five in BRCA1, sixteen in BRCA2, ten in CHEK2 and five in TP53, with the aim of tagging all other known, common variants. SNPs generating the common amino acid substitutions were specifically forced into the tagging set for each gene.ResultsNo significant breast cancer associations were detected with any individual or combination of tag SNPs.ConclusionIt is unlikely that there are any other common variants in these genes conferring measurably increased risks of breast cancer in our study population.


Human Molecular Genetics | 2013

Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression

Zsofia Kote-Jarai; Edward J. Saunders; Daniel Leongamornlert; Malgorzata Tymrakiewicz; Tokhir Dadaev; Sarah Jugurn-Little; Helen Ross-Adams; Ali Amin Al Olama; Sara Benlloch; Silvia Halim; Roslin Russel; Alison M. Dunning; Craig Luccarini; Joe Dennis; David E. Neal; Freddie C. Hamdy; Jenny Donovan; Kenneth Muir; Graham G. Giles; Gianluca Severi; Fredrik Wiklund; Henrik Grönberg; Christopher A. Haiman; Fredrick R. Schumacher; Brian E. Henderson; Loic Le Marchand; Sara Lindström; Peter Kraft; David J. Hunter; Susan M. Gapstur

Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease.


Radiotherapy and Oncology | 2014

A genome wide association study (GWAS) providing evidence of an association between common genetic variants and late radiotherapy toxicity

Gillian C. Barnett; Deborah Thompson; Laura Fachal; Sarah L. Kerns; Christopher J. Talbot; Rebecca Elliott; Leila Dorling; Charlotte E. Coles; David P. Dearnaley; Barry S. Rosenstein; Ana Vega; Paul Symonds; John Yarnold; Caroline Baynes; Kyriaki Michailidou; Joe Dennis; Jonathan Tyrer; Jennifer S. Wilkinson; Antonio Gómez-Caamaño; George A. Tanteles; Radka Platte; Rebecca Mayes; Don Conroy; Mel Maranian; Craig Luccarini; S. Gulliford; Matthew R. Sydes; Emma Hall; Joanne Haviland; Vivek Misra

BACKGROUND AND PURPOSE This study was designed to identify common single nucleotide polymorphisms (SNPs) associated with toxicity 2years after radiotherapy. MATERIALS AND METHODS A genome wide association study was performed in 1850 patients from the RAPPER study: 1217 received adjuvant breast radiotherapy and 633 had radical prostate radiotherapy. Genotype associations with both overall and individual endpoints of toxicity were tested via univariable and multivariable regression. Replication of potentially associated SNPs was carried out in three independent patient cohorts who had radiotherapy for prostate (516 RADIOGEN and 862 Gene-PARE) or breast (355 LeND) cancer. RESULTS Quantile-quantile plots show more associations at the P<5×10(-7) level than expected by chance (164 vs. 9 for the prostate cases and 29 vs. 4 for breast cases), providing evidence that common genetic variants are associated with risk of toxicity. Strongest associations were for individual endpoints rather than an overall measure of toxicity in all patients. However, in general, significant associations were not validated at a nominal 0.05 level in the replication cohorts. CONCLUSIONS This largest GWAS to date provides evidence of true association between common genetic variants and toxicity. Associations with toxicity appeared to be tumour site-specific. Future GWAS require higher statistical power, in particular in the validation stage, to test clinically relevant effect sizes of SNP associations with individual endpoints, but the required sample sizes are achievable.


Human Molecular Genetics | 2009

Association of ESR1 gene tagging SNPs with breast cancer risk

Alison M. Dunning; Catherine S. Healey; Caroline Baynes; Ana Teresa Maia; Serena Scollen; Ana Vega; Raquel Rodríguez; Nuno L. Barbosa-Morais; Bruce A.J. Ponder; Yen Ling Low; Sheila Bingham; Christopher A. Haiman; Loic Le Marchand; Annegien Broeks; Marjanka K. Schmidt; John L. Hopper; Melissa C. Southey; Matthias W. Beckmann; Peter A. Fasching; Julian Peto; Nichola Johnson; Stig E. Bojesen; Børge G. Nordestgaard; Roger L. Milne; Javier Benitez; Ute Hamann; Yon Ko; Rita K. Schmutzler; Barbara Burwinkel; Peter Schürmann

We have conducted a three-stage, comprehensive single nucleotide polymorphism (SNP)-tagging association study of ESR1 gene variants (SNPs) in more than 55,000 breast cancer cases and controls from studies within the Breast Cancer Association Consortium (BCAC). No large risks or highly significant associations were revealed. SNP rs3020314, tagging a region of ESR1 intron 4, is associated with an increase in breast cancer susceptibility with a dominant mode of action in European populations. Carriers of the c-allele have an odds ratio (OR) of 1.05 [95% Confidence Intervals (CI) 1.02-1.09] relative to t-allele homozygotes, P = 0.004. There is significant heterogeneity between studies, P = 0.002. The increased risk appears largely confined to oestrogen receptor-positive tumour risk. The region tagged by SNP rs3020314 contains sequence that is more highly conserved across mammalian species than the rest of intron 4, and it may subtly alter the ratio of two mRNA splice forms.


Breast Cancer Research | 2010

CYP2D6 gene variants: association with breast cancer specific survival in a cohort of breast cancer patients from the United Kingdom treated with adjuvant tamoxifen

Jean Abraham; Mel Maranian; Kristy Driver; Radka Platte; Bolot Kalmyrzaev; Caroline Baynes; Craig Luccarini; Mitulkumar Nandlal Shah; Susan Ingle; David C Greenberg; Helena M. Earl; Alison M. Dunning; Paul Pharoah; Carlos Caldas

IntroductionTamoxifen is one of the most effective adjuvant breast cancer therapies available. Its metabolism involves the phase I enzyme, cytochrome P4502D6 (CYP2D6), encoded by the highly polymorphic CYP2D6 gene. CYP2D6 variants resulting in poor metabolism of tamoxifen are hypothesised to reduce its efficacy. An FDA-approved pre-treatment CYP2D6 gene testing assay is available. However, evidence from published studies evaluating CYP2D6 variants as predictive factors of tamoxifen efficacy and clinical outcome are conflicting, querying the clinical utility of CYP2D6 testing. We investigated the association of CYP2D6 variants with breast cancer specific survival (BCSS) in breast cancer patients receiving tamoxifen.MethodsThis was a population based case-cohort study. We genotyped known functional variants (n = 7; minor allele frequency (MAF) > 0.01) and single nucleotide polymorphisms (SNPs) (n = 5; MAF > 0.05) tagging all known common variants (tagSNPs), in CYP2D6 in 6640 DNA samples from patients with invasive breast cancer from SEARCH (Studies of Epidemiology and Risk factors in Cancer Heredity); 3155 cases had received tamoxifen therapy. There were 312 deaths from breast cancer, in the tamoxifen treated patients, with over 18000 years of cumulative follow-up. The association between genotype and BCSS was evaluated using Cox proportional hazards regression analysis.ResultsIn tamoxifen treated patients, there was weak evidence that the poor-metaboliser variant, CYP2D6*6 (MAF = 0.01), was associated with decreased BCSS (P = 0.02; HR = 1.95; 95% CI = 1.12-3.40). No other variants, including CYP2D6*4 (MAF = 0.20), previously reported to be associated with poorer clinical outcomes, were associated with differences in BCSS, in either the tamoxifen or non-tamoxifen groups.ConclusionsCYP2D6*6 may affect BCSS in tamoxifen-treated patients. However, the absence of an association with survival in more frequent variants, including CYP2D6*4, questions the validity of the reported association between CYP2D6 genotype and treatment response in breast cancer. Until larger, prospective studies confirming any associations are available, routine CYP2D6 genetic testing should not be used in the clinical setting.


Human Molecular Genetics | 2013

A genome-wide association scan (GWAS) for mean telomere length within the COGS project: identified loci show little association with hormone-related cancer risk

Karen A. Pooley; Stig E. Bojesen; Maren Weischer; Sune F. Nielsen; Deborah Thompson; Ali Amin Al Olama; Kyriaki Michailidou; Jonathan Tyrer; Sara Benlloch; Judith E. Brown; Tina Audley; Robert Luben; Kay-Tee Khaw; David E. Neal; Freddie C. Hamdy; Jenny Donovan; Zsofia Kote-Jarai; Caroline Baynes; Mitul Shah; Manjeet K. Bolla; Qin Wang; Joe Dennis; Ed Dicks; Rongxi Yang; Anja Rudolph; Joellen M. Schildkraut; Jenny Chang-Claude; Barbara Burwinkel; Georgia Chenevix-Trench; Paul Pharoah

Mean telomere length (TL) in blood cells is heritable and has been reported to be associated with risks of several diseases, including cancer. We conducted a meta-analysis of three GWAS for TL (total n=2240) and selected 1629 variants for replication via the “iCOGS” custom genotyping array. All ∼200 000 iCOGS variants were analysed with TL, and those displaying associations in healthy controls (n = 15 065) were further tested in breast cancer cases (n = 11 024). We found a novel TL association (Ptrend < 4 × 10−10) at 3p14.4 close to PXK and evidence (Ptrend < 7 × 10−7) for TL loci at 6p22.1 (ZNF311) and 20q11.2 (BCL2L1). We additionally confirmed (Ptrend < 5 × 10−14) the previously reported loci at 3q26.2 (TERC), 5p15.3 (TERT) and 10q24.3 (OBFC1) and found supportive evidence (Ptrend < 5 × 10−4) for the published loci at 2p16.2 (ACYP2), 4q32.2 (NAF1) and 20q13.3 (RTEL1). SNPs tagging these loci explain TL differences of up to 731 bp (corresponding to 18% of total TL in healthy individuals), however, they display little direct evidence for association with breast, ovarian or prostate cancer risks.


Radiotherapy and Oncology | 2010

No association between SNPs regulating TGF-β1 secretion and late radiotherapy toxicity to the breast: results from the RAPPER study.

Gillian C. Barnett; Charlotte E. Coles; N.G. Burnet; Paul Pharoah; Jennifer S. Wilkinson; Catharine M L West; Rebecca Elliott; Caroline Baynes; Alison M. Dunning

BACKGROUND AND PURPOSE Several small studies have reported associations between TGFB1 single nucleotide polymorphisms (SNPs), considered to increase secretion of TGF-β1, and greater than 3-fold increases in incidence of fibrosis - an indicator of late toxicity after radiotherapy in breast cancer patients. MATERIALS AND METHODS Two SNPs in TGFB1, C-509T (rs1800469) and L10P (rs1800470), were genotyped in 778 breast cancer patients who had received radiotherapy to the breast. Late radiotherapy toxicity was assessed two years after radiotherapy using a validated photographic technique, clinical assessment and patient questionnaires. RESULTS On photographic assessment, 210 (27%) patients showed some degree of breast shrinkage, whilst 45 (6%) patients showed marked breast shrinkage. There was no significant association of genotype at either of the TGFB1 SNPs with any measure of late radiation toxicity. CONCLUSION This adequately powered trial failed to confirm previously reported increases in fibrosis with TGFB1 genotype - any increase greater than 1.36 can be excluded with 95% confidence. Similar frequent failures to replicate associations with candidate genes have been resolved using genome-wide association scans: this methodology detects common, low risk alleles but requires even larger patient numbers for adequate statistical power.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Rat Mcs5a is a compound quantitative trait locus with orthologous human loci that associate with breast cancer risk

David J. Samuelson; Stephanie E. Hesselson; Beth A. Aperavich; Yunhong Zan; Jill D. Haag; Amy Trentham-Dietz; John M. Hampton; Bob Mau; Kai-Shun Chen; Caroline Baynes; Kay-Tee Khaw; Robert Luben; Barbara Perkins; Mitul Shah; Paul Pharoah; Alison M. Dunning; Doug Easton; Bruce A.J. Ponder; Michael N. Gould

Breast cancer risk is a polygenic trait. To identify breast cancer modifier alleles that have a high population frequency and low penetrance we used a comparative genomics approach. Quantitative trait loci (QTL) were initially identified by linkage analysis in a rat mammary carcinogenesis model followed by verification in congenic rats carrying the specific QTL allele under study. The Mcs5a locus was identified by fine-mapping Mcs5 in a congenic model. Here we characterize the Mcs5a locus, which when homozygous for the Wky allele, reduces mammary cancer risk by 50%. The Mcs5a locus is a compound QTL with at least two noncoding interacting elements: Mcs5a1 and Mcs5a2. The resistance phenotype is only observed in rats carrying at least one copy of the Wky allele of each element on the same chromosome. Mcs5a1 is located within the ubiquitin ligase Fbxo10, whereas Mcs5a2 includes the 5′ portion of Frmpd1. Resistant congenic rats show a down-regulation of Fbxo10 in the thymus and an up-regulation of Frmpd1 in the spleen. The association of the Mcs5a1 and Mcs5a2 human orthologs with breast cancer was tested in two population-based breast cancer case-control studies (≈12,000 women). The minor alleles of rs6476643 (MCS5A1) and rs2182317 (MCS5A2) were independently associated with breast cancer risk. The minor allele of rs6476643 increases risk, whereas the rs2182317 minor allele decreases risk. Both alleles have a high population frequency and a low penetrance toward breast cancer risk.

Collaboration


Dive into the Caroline Baynes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Pharoah

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Luben

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Don Conroy

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Joe Dennis

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge