Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caterina Penone is active.

Publication


Featured researches published by Caterina Penone.


Nature | 2016

Land-use intensification causes multitrophic homogenization of grassland communities.

Martin M. Gossner; Thomas M. Lewinsohn; Tiemo Kahl; Fabrice Grassein; Steffen Boch; Daniel Prati; Klaus Birkhofer; Swen C. Renner; Johannes Sikorski; Tesfaye Wubet; Hartmut Arndt; Vanessa Baumgartner; Stefan Blaser; Nico Blüthgen; Carmen Börschig; François Buscot; Tim Diekötter; Leonardo R. Jorge; Kirsten Jung; Alexander C. Keyel; Alexandra-Maria Klein; Sandra Klemmer; Jochen Krauss; Markus Lange; Jörg Müller; Jörg Overmann; Esther Pašalić; Caterina Penone; David J. Perović; Oliver Purschke

Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing β-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on β-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in β-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the β-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Global priorities for conservation across multiple dimensions of mammalian diversity

Fernanda Thiesen Brum; Catherine H. Graham; Gabriel C. Costa; S. Blair Hedges; Caterina Penone; Volker C. Radeloff; Carlo Rondinini; Rafaela Loyola; Ana D. Davidson

Significance Approximately a quarter of all land mammals are currently threatened, mostly by human activities including habitat loss and harvesting. Here, we provide the first biological map of priority areas that captures all three dimensions of mammalian biodiversity: taxonomic, phylogenetic, and traits. We find limited overlap in priority regions across the three dimensions and with currently protected areas, indicating that conservation planning should consider multiple dimensions of biodiversity to maximize biodiversity conservation. Our complementarity-based prioritization provides a conservation solution that can be incorporated in future conservation planning efforts aimed at helping protect not only species but also evolutionary potential and ecosystem function. Conservation priorities that are based on species distribution, endemism, and vulnerability may underrepresent biologically unique species as well as their functional roles and evolutionary histories. To ensure that priorities are biologically comprehensive, multiple dimensions of diversity must be considered. Further, understanding how the different dimensions relate to one another spatially is important for conservation prioritization, but the relationship remains poorly understood. Here, we use spatial conservation planning to (i) identify and compare priority regions for global mammal conservation across three key dimensions of biodiversity—taxonomic, phylogenetic, and traits—and (ii) determine the overlap of these regions with the locations of threatened species and existing protected areas. We show that priority areas for mammal conservation exhibit low overlap across the three dimensions, highlighting the need for an integrative approach for biodiversity conservation. Additionally, currently protected areas poorly represent the three dimensions of mammalian biodiversity. We identify areas of high conservation priority among and across the dimensions that should receive special attention for expanding the global protected area network. These high-priority areas, combined with areas of high priority for other taxonomic groups and with social, economic, and political considerations, provide a biological foundation for future conservation planning efforts.


Scientific Data | 2017

AmphiBIO, a global database for amphibian ecological traits

Brunno Freire Oliveira; Vinícius de Avelar São-Pedro; Georgina Santos-Barrera; Caterina Penone; Gabriel C. Costa

Current ecological and evolutionary research are increasingly moving from species- to trait-based approaches because traits provide a stronger link to organism’s function and fitness. Trait databases covering a large number of species are becoming available, but such data remains scarce for certain groups. Amphibians are among the most diverse vertebrate groups on Earth, and constitute an abundant component of major terrestrial and freshwater ecosystems. They are also facing rapid population declines worldwide, which is likely to affect trait composition in local communities, thereby impacting ecosystem processes and services. In this context, we introduce AmphiBIO, a comprehensive database of natural history traits for amphibians worldwide. The database releases information on 17 traits related to ecology, morphology and reproduction features of amphibians. We compiled data from more than 1,500 literature sources, and for more than 6,500 species of all orders (Anura, Caudata and Gymnophiona), 61 families and 531 genera. This database has the potential to allow unprecedented large-scale analyses in ecology, evolution, and conservation of amphibians.


Ecology and Evolution | 2016

Integrating data-deficient species in analyses of evolutionary history loss

Simon Veron; Caterina Penone; Philippe Clergeau; Gabriel C. Costa; Brunno Freire Oliveira; Vinícius de Avelar São-Pedro; Sandrine Pavoine

Abstract There is an increasing interest in measuring loss of phylogenetic diversity and evolutionary distinctiveness which together depict the evolutionary history of conservation interest. Those losses are assessed through the evolutionary relationships between species and species threat status or extinction probabilities. Yet, available information is not always sufficient to quantify the threat status of species that are then classified as data deficient. Data‐deficient species are a crucial issue as they cause incomplete assessments of the loss of phylogenetic diversity and evolutionary distinctiveness. We aimed to explore the potential bias caused by data‐deficient species in estimating four widely used indices: HEDGE, EDGE, PDloss, and Expected PDloss. Second, we tested four different widely applicable and multitaxa imputation methods and their potential to minimize the bias for those four indices. Two methods are based on a best‐ vs. worst‐case extinction scenarios, one is based on the frequency distribution of threat status within a taxonomic group and one is based on correlates of extinction risks. We showed that data‐deficient species led to important bias in predictions of evolutionary history loss (especially high underestimation when they were removed). This issue was particularly important when data‐deficient species tended to be clustered in the tree of life. The imputation method based on correlates of extinction risks, especially geographic range size, had the best performance and enabled us to improve risk assessments. Solving threat status of DD species can fundamentally change our understanding of loss of phylogenetic diversity. We found that this loss could be substantially higher than previously found in amphibians, squamate reptiles, and carnivores. We also identified species that are of high priority for the conservation of evolutionary distinctiveness.


Ecology and Evolution | 2018

Nutrient stoichiometry and land use rather than species richness determine plant functional diversity

Verena Busch; Valentin H. Klaus; Caterina Penone; Deborah Schäfer; Steffen Boch; Daniel Prati; Jörg Müller; Stephanie A. Socher; Ülo Niinemets; Josep Peñuelas; Norbert Hölzel; Markus Fischer; Till Kleinebecker

Abstract Plant functional traits reflect individual and community ecological strategies. They allow the detection of directional changes in community dynamics and ecosystemic processes, being an additional tool to assess biodiversity than species richness. Analysis of functional patterns in plant communities provides mechanistic insight into biodiversity alterations due to anthropogenic activity. Although studies have consi‐dered of either anthropogenic management or nutrient availability on functional traits in temperate grasslands, studies combining effects of both drivers are scarce. Here, we assessed the impacts of management intensity (fertilization, mowing, grazing), nutrient stoichiometry (C, N, P, K), and vegetation composition on community‐weighted means (CWMs) and functional diversity (Raos Q) from seven plant traits in 150 grasslands in three regions in Germany, using data of 6 years. Land use and nutrient stoichiometry accounted for larger proportions of model variance of CWM and Raos Q than species richness and productivity. Grazing affected all analyzed trait groups; fertilization and mowing only impacted generative traits. Grazing was clearly associated with nutrient retention strategies, that is, investing in durable structures and production of fewer, less variable seed. Phenological variability was increased. Fertilization and mowing decreased seed number/mass variability, indicating competition‐related effects. Impacts of nutrient stoichiometry on trait syndromes varied. Nutrient limitation (large N:P, C:N ratios) promoted species with conservative strategies, that is, investment in durable plant structures rather than fast growth, fewer seed, and delayed flowering onset. In contrast to seed mass, leaf‐economics variability was reduced under P shortage. Species diversity was positively associated with the variability of generative traits. Synthesis. Here, land use, nutrient availability, species richness, and plant functional strategies have been shown to interact complexly, driving community composition, and vegetation responses to management intensity. We suggest that deeper understanding of underlying mechanisms shaping community assembly and biodiversity will require analyzing all these parameters.


Heredity | 2017

A comparative study on karyotypic diversification rate in mammals

Pablo A. Martinez; Uedson Pereira Jacobina; R Fernandes; C Brito; Caterina Penone; Talita Ferreira Amado; C R Fonseca; Claudio J. Bidau

Chromosomal rearrangements have a relevant role in organismic evolution. However, little is known about the mechanisms that lead different phylogenetic clades to have different chromosomal rearrangement rates. Here, we investigate the causes behind the wide karyotypic diversity exhibited by mammals. In particular, we analyzed the role of metabolic, reproductive, biogeographic and genomic characteristics on the rates of macro- and microstructural karyotypic diversification (rKD) using comparative phylogenetic methods. We found evidence that reproductive characteristics such as larger litter size per year and longevity, by allowing a higher number of meioses in absolute time, favor a higher probability of chromosomal change. Furthermore, families with large geographic distributions but containing species with restricted geographic ranges showed a greater probability of fixation of macrostructural chromosomal changes in different geographic areas. Finally, rKD does not evolve by Brownian motion because the mutation rate depends on the concerted evolution of repetitive sequences. The decisive factors of rKD evolution will be natural selection, genetic drift and meiotic drive that will eventually allow or not the fixation of the rearrangements. Our results indicate that mammalian karyotypic diversity is influenced by historical and adaptive mechanisms where reproductive and genomic factors modulate the rate of chromosomal change.


bioRxiv | 2018

Towards an Ecological Trait-data Standard

Florian D. Schneider; Malte Jochum; Gaëtane Le Provost; Andreas Ostrowski; Caterina Penone; David Fichtmüller; Anton Güntsch; Martin M. Gossner; Birgitta König-Ries; Peter Manning; Nadja K. Simons

Trait-based approaches are widespread throughout ecological research, offering great potential for trait data to deliver general and mechanistic conclusions. Accordingly,a wealth of trait data is available for many organism groups, but, due to a lack of standardisation, these data come in heterogeneous formats. We review current initiatives and infrastructures for standardising trait data and discuss the importance of standardisation for trait data hosted in distributed open-access repositories. In order to facilitate the standardisation and harmonisation of distributed trait datasets, we propose a general and simple vocabulary as well as a simple data structure for storing and sharing ecological trait data. Additionally, we provide an R-package that enables the transformation of any tabular dataset into the proposed format. This also allows trait datasets from heterogeneous sources to be harmonised and merged, thus facilitating data compilation for any particular research focus. With these decentralised tools for trait-data harmonisation, we intend to facilitate the exchange and analysis of trait data within ecological research and enable global syntheses of traits across a wide range of taxa and ecosystems.


PeerJ | 2018

Body size information in large-scale acoustic bat databases

Caterina Penone; Christian Kerbiriou; Jean-François Julien; Julie Marmet; Isabelle Le Viol

Background Citizen monitoring programs using acoustic data have been useful for detecting population and community patterns. However, they have rarely been used to study broad scale patterns of species traits. We assessed the potential of acoustic data to detect broad scale patterns in body size. We compared geographical patterns in body size with acoustic signals in the bat species Pipistrellus pipistrellus. Given the correlation between body size and acoustic characteristics, we expected to see similar results when analyzing the relationships of body size and acoustic signals with climatic variables. Methods We assessed body size using forearm length measurements of 1,359 bats, captured by mist nets in France. For acoustic analyses, we used an extensive dataset collected through the French citizen bat survey. We isolated each bat echolocation call (n = 4,783) and performed automatic measures of signals, including the frequency of the flattest part of the calls (characteristic frequency). We then examined the relationship between forearm length, characteristic frequencies, and two components resulting from principal component analysis for geographic (latitude, longitude) and climatic variables. Results Forearm length was positively correlated with higher precipitation, lower seasonality, and lower temperatures. Lower characteristic frequencies (i.e., larger body size) were mostly related to lower temperatures and northern latitudes. While conducted on different datasets, the two analyses provided congruent results. Discussion Acoustic data from citizen science programs can thus be useful for the detection of large-scale patterns in body size. This first analysis offers a new perspective for the use of large acoustic databases to explore biological patterns and to address both theoretical and applied questions.


Methods in Ecology and Evolution | 2018

sensiPhy: An r-package for sensitivity analysis in phylogenetic comparative methods

Gustavo Brant Paterno; Caterina Penone; Gijsbert D. A. Werner

Biological conclusions drawn from phylogenetic comparative methods can be sensitive to uncertainty in species sampling, phylogeny and data. To be confident about our conclusions, we need to quantify their robustness to such uncertainty. We present sensiPhy, an r-package, to easily and rapidly perform sensitivity analysis for phylogenetic comparative methods. sensiPhy allows researchers to evaluate the sampling effort, detect influential species and clades, assess phylogenetic uncertainty and quantify the effects of intraspecific variation, for phylogenetic regression and for metrics of phylogenetic signal, diversification and trait evolution. Uniquely, sensiPhy allows users to simultaneously quantify the effects of different types of uncertainty and potential interactions among them. Using real data, we show how conclusions from comparative methods can be affected by uncertainty and how sensiPhy can help determine if a conclusion is robust. By providing a single, intuitive and user-friendly resource that can evaluate various sources of uncertainty, sensiPhy aims to encourage researchers, and particularly less-experienced users, to incorporate sensitivity analyses in their phylogenetic comparative analyses. © 2018 The Authors. Methods in Ecology and Evolution © 2018 British Ecological Society


Journal of Biogeography | 2018

Environmental variation is a major predictor of global trait turnover in mammals

Ben G. Holt; Gabriel C. Costa; Caterina Penone; Jean-Philippe Lessard; Thomas M. Brooks; Ana D. Davidson; S. Blair Hedges; Volker C. Radeloff; Carsten Rahbek; Carlo Rondinini; Catherine H. Graham

Collaboration


Dive into the Caterina Penone's collaboration.

Top Co-Authors

Avatar

Gabriel C. Costa

Auburn University at Montgomery

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Volker C. Radeloff

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlo Rondinini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Jörg Müller

Bavarian Forest National Park

View shared research outputs
Researchain Logo
Decentralizing Knowledge