Chaitali Dekiwadia
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chaitali Dekiwadia.
PLOS Pathogens | 2011
Lin Chen; Sash Lopaticki; David T. Riglar; Chaitali Dekiwadia; Alex D. Uboldi; Wai-Hong Tham; Matthew T. O'Neill; Dave Richard; Jake Baum; Stuart A. Ralph; Alan F. Cowman
Invasion of erythrocytes by Plasmodium falciparum involves a complex cascade of protein-protein interactions between parasite ligands and host receptors. The reticulocyte binding-like homologue (PfRh) protein family is involved in binding to and initiating entry of the invasive merozoite into erythrocytes. An important member of this family is PfRh5. Using ion-exchange chromatography, immunoprecipitation and mass spectroscopy, we have identified a novel cysteine-rich protein we have called P. falciparum Rh5 interacting protein (PfRipr) (PFC1045c), which forms a complex with PfRh5 in merozoites. Mature PfRipr has a molecular weight of 123 kDa with 10 epidermal growth factor-like domains and 87 cysteine residues distributed along the protein. In mature schizont stages this protein is processed into two polypeptides that associate and form a complex with PfRh5. The PfRipr protein localises to the apical end of the merozoites in micronemes whilst PfRh5 is contained within rhoptries and both are released during invasion when they form a complex that is shed into the culture supernatant. Antibodies to PfRipr1 potently inhibit merozoite attachment and invasion into human red blood cells consistent with this complex playing an essential role in this process.
Journal of Biological Chemistry | 2012
Hayley E. Bullen; Sarah C. Charnaud; Ming Kalanon; David T. Riglar; Chaitali Dekiwadia; Niwat Kangwanrangsan; Motomi Torii; Takafumi Tsuboi; Jacob Baum; Stuart A. Ralph; Alan F. Cowman; Tania F. de Koning-Ward; Brendan S. Crabb; Paul R. Gilson
Background: To survive, Plasmodium falciparum parasites export proteins into their host cell. Results: We have characterized the localization, synthesis, and macromolecular-arrangement of the protein export machinery in Plasmodium falciparum. Conclusion: This machinery is carried into the host-cell and is present as a large macromolecular complex. Significance: These data fill current gaps in the field relating to the biochemical nature of Plasmodium falciparum protein export. To survive within its host erythrocyte, Plasmodium falciparum must export hundreds of proteins across both its parasite plasma membrane and surrounding parasitophorous vacuole membrane, most of which are likely to use a protein complex known as PTEX (Plasmodium translocon of exported proteins). PTEX is a putative protein trafficking machinery responsible for the export of hundreds of proteins across the parasitophorous vacuole membrane and into the human host cell. Five proteins are known to comprise the PTEX complex, and in this study, three of the major stoichiometric components are investigated including HSP101 (a AAA+ ATPase), a protein of no known function termed PTEX150, and the apparent membrane component EXP2. We show that these proteins are synthesized in the preceding schizont stage (PTEX150 and HSP101) or even earlier in the life cycle (EXP2), and before invasion these components reside within the dense granules of invasive merozoites. From these apical organelles, the protein complex is released into the host cell where it resides with little turnover in the parasitophorous vacuole membrane for most of the remainder of the following cell cycle. At this membrane, PTEX is arranged in a stable macromolecular complex of >1230 kDa that includes an ∼600-kDa apparently homo-oligomeric complex of EXP2 that can be separated from the remainder of the PTEX complex using non-ionic detergents. Two different biochemical methods undertaken here suggest that PTEX components associate as EXP2-PTEX150-HSP101, with EXP2 associating with the vacuolar membrane. Collectively, these data support the hypothesis that EXP2 oligomerizes and potentially forms the putative membrane-spanning pore to which the remainder of the PTEX complex is attached.
Genome Biology | 2012
Sophie C. Oehring; Ben J. Woodcroft; Suzette Moes; Johanna Wetzel; Olivier Dietz; Andreas Pulfer; Chaitali Dekiwadia; Pascal Maeser; Christian Flueck; Kathrin Witmer; Nicolas M. B. Brancucci; Igor Niederwieser; Paul Jenoe; Stuart A. Ralph; Till S. Voss
BackgroundThe post-genomic era of malaria research provided unprecedented insights into the biology of Plasmodium parasites. Due to the large evolutionary distance to model eukaryotes, however, we lack a profound understanding of many processes in Plasmodium biology. One example is the cell nucleus, which controls the parasite genome in a development- and cell cycle-specific manner through mostly unknown mechanisms. To study this important organelle in detail, we conducted an integrative analysis of the P. falciparum nuclear proteome.ResultsWe combined high accuracy mass spectrometry and bioinformatic approaches to present for the first time an experimentally determined core nuclear proteome for P. falciparum. Besides a large number of factors implicated in known nuclear processes, one-third of all detected proteins carry no functional annotation, including many phylum- or genus-specific factors. Importantly, extensive experimental validation using 30 transgenic cell lines confirmed the high specificity of this inventory, and revealed distinct nuclear localization patterns of hitherto uncharacterized proteins. Further, our detailed analysis identified novel protein domains potentially implicated in gene transcription pathways, and sheds important new light on nuclear compartments and processes including regulatory complexes, the nucleolus, nuclear pores, and nuclear import pathways.ConclusionOur study provides comprehensive new insight into the biology of the Plasmodium nucleus and will serve as an important platform for dissecting general and parasite-specific nuclear processes in malaria parasites. Moreover, as the first nuclear proteome characterized in any protist organism, it will provide an important resource for studying evolutionary aspects of nuclear biology.
PLOS ONE | 2012
Fiona Angrisano; David T. Riglar; Angelika Sturm; Jc Volz; Michael J. Delves; Elizabeth S. Zuccala; Lynne Turnbull; Chaitali Dekiwadia; Maya A. Olshina; Danushka S. Marapana; W. Wei-Lynn Wong; Mollard; Ch Bradin; Christopher J. Tonkin; Peter Gunning; Stuart A. Ralph; Cynthia B. Whitchurch; Re Sinden; Alan F. Cowman; Geoffrey I. McFadden; Jake Baum
Actin dynamics have been implicated in a variety of developmental processes during the malaria parasite lifecycle. Parasite motility, in particular, is thought to critically depend on an actomyosin motor located in the outer pellicle of the parasite cell. Efforts to understand the diverse roles actin plays have, however, been hampered by an inability to detect microfilaments under native conditions. To visualise the spatial dynamics of actin we generated a parasite-specific actin antibody that shows preferential recognition of filamentous actin and applied this tool to different lifecycle stages (merozoites, sporozoites and ookinetes) of the human and mouse malaria parasite species Plasmodium falciparum and P. berghei along with tachyzoites from the related apicomplexan parasite Toxoplasma gondii. Actin filament distribution was found associated with three core compartments: the nuclear periphery, pellicular membranes of motile or invasive parasite forms and in a ring-like distribution at the tight junction during merozoite invasion of erythrocytes in both human and mouse malaria parasites. Localisation at the nuclear periphery is consistent with an emerging role of actin in facilitating parasite gene regulation. During invasion, we show that the actin ring at the parasite-host cell tight junction is dependent on dynamic filament turnover. Super-resolution imaging places this ring posterior to, and not concentric with, the junction marker rhoptry neck protein 4. This implies motor force relies on the engagement of dynamic microfilaments at zones of traction, though not necessarily directly through receptor-ligand interactions at sites of adhesion during invasion. Combined, these observations extend current understanding of the diverse roles actin plays in malaria parasite development and apicomplexan cell motility, in particular refining understanding on the linkage of the internal parasite gliding motor with the extra-cellular milieu.
PLOS Pathogens | 2011
Tony Triglia; Lin Chen; Sash Lopaticki; Chaitali Dekiwadia; David T. Riglar; Anthony N. Hodder; Stuart A. Ralph; Jake Baum; Alan F. Cowman
Plasmodium falciparum, the causative agent of the most severe form of malaria in humans invades erythrocytes using multiple ligand-receptor interactions. The P. falciparum reticulocyte binding-like homologue proteins (PfRh or PfRBL) are important for entry of the invasive merozoite form of the parasite into red blood cells. We have analysed two members of this protein family, PfRh2a and PfRh2b, and show they undergo a complex series of proteolytic cleavage events before and during merozoite invasion. We show that PfRh2a undergoes a cleavage event in the transmembrane region during invasion consistent with activity of the membrane associated PfROM4 protease that would result in release of the ectodomain into the supernatant. We also show that PfRh2a and PfRh2b bind to red blood cells and have defined the erythrocyte-binding domain to a 15 kDa region at the N-terminus of each protein. Antibodies to this receptor-binding region block merozoite invasion demonstrating the important function of this domain. This region of PfRh2a and PfRh2b has potential in a combination vaccine with other erythrocyte binding ligands for induction of antibodies that would block a broad range of invasion pathways for P. falciparum into human erythrocytes.
Cellular Microbiology | 2013
Eric Hanssen; Chaitali Dekiwadia; David T. Riglar; Melanie Rug; Leandro Lemgruber; Alan F. Cowman; Marek Cyrklaff; Mikhail Kudryashev; Friedrich Frischknecht; Jake Baum; Stuart A. Ralph
Erythrocyte invasion by merozoites forms of the malaria parasite is a key step in the establishment of human malaria disease. To date, efforts to understand cellular events underpinning entry have been limited to insights from non‐human parasites, with no studies at sub‐micrometer resolution undertaken using the most virulent human malaria parasite, Plasmodium falciparum. This leaves our understanding of the dynamics of merozoite sub‐cellular compartments during infectionincomplete, in particular that of the secretory organelles. Using advances in P. falciparum merozoite isolation and new imaging techniques we present a three‐dimensional study of invasion using electron microscopy, cryo‐electron tomography and cryo‐X‐ray tomography. We describe the core architectural features of invasion and identify fusion between rhoptries at the commencement of invasion as a hitherto overlooked event that likely provides a critical step that initiates entry. Given the centrality of merozoite organelle proteins to vaccine development, these insights provide a mechanistic framework to understand therapeutic strategies targeted towards the cellular events of invasion.
Malaria Journal | 2013
Leandro Lemgruber; Mikhail Kudryashev; Chaitali Dekiwadia; David T. Riglar; Jake Baum; Henning Stahlberg; Stuart A. Ralph; Friedrich Frischknecht
BackgroundThe apicoplast is a plastid organelle derived from a secondary endosymbiosis, containing biosynthetic pathways essential for the survival of apicomplexan parasites. The Toxoplasma apicoplast clearly possesses four membranes but in related Plasmodium spp. the apicoplast has variably been reported to have either three or four membranes.MethodsCryo-electron tomography was employed to image merozoites of Plasmodium falciparum and Plasmodium berghei frozen in their near-native state. Three-dimensional reconstructions revealed the number of apicoplast membranes and the association of the apicoplast with other organelles. Routine transmission electron microscopy of parasites preserved by high-pressure freezing followed by freeze substitution techniques was also used to analyse apicoplast morphology.ResultsCryo-preserved parasites showed clearly four membranes surrounding the apicoplast. A wider gap between the second and third apicoplast membranes was frequently observed. The apicoplast was found in close proximity to the nucleus and to the rhoptries. The apicoplast matrix showed ribosome-sized particles and membranous whorls.ConclusionsThe Plasmodium apicoplast possesses four membranes, as do the apicoplasts of other apicomplexan parasites. This is consistent with a four-membraned secondary endosymbiotic plastid ancestor.
PLOS ONE | 2012
Elizabeth S. Zuccala; Alexander M. Gout; Chaitali Dekiwadia; Danushka S. Marapana; Fiona Angrisano; Lynne Turnbull; David T. Riglar; Kelly L. Rogers; Cynthia B. Whitchurch; Stuart A. Ralph; Terence P. Speed; Jake Baum
Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction – the organising interface between parasite and host cell during entry. Formation of this structure is not, however, shared across all Apicomplexa or indeed all parasite lifecycle stages. Here, using an in silico integrative genomic search and endogenous gene-tagging strategy, we sought to characterise proteins that function specifically during junction-dependent invasion, a class of proteins we term invasins to distinguish them from adhesins that function in species specific host-cell recognition. High-definition imaging of tagged Plasmodium falciparum invasins localised proteins to multiple cellular compartments of the blood stage merozoite. This includes several that localise to distinct subcompartments within the rhoptries. While originating from the same organelle, however, each has very different dynamics during invasion. Apical Sushi Protein and Rhoptry Neck protein 2 release early, following the junction, whilst a novel rhoptry protein PFF0645c releases only after invasion is complete. This supports the idea that organisation of proteins within a secretory organelle determines the order and destination of protein secretion and provides a localisation-based classification strategy for predicting invasin function during apicomplexan parasite invasion.
Traffic | 2012
Danushka S. Marapana; Danny W. Wilson; Elizabeth S. Zuccala; Chaitali Dekiwadia; James G. Beeson; Stuart A. Ralph; Jake Baum
The establishment of parasite infection within the human erythrocyte is an essential stage in the development of malaria disease. As such, significant interest has focused on the mechanics that underpin invasion and on characterization of parasite molecules involved. Previous evidence has implicated a presenilin‐like signal peptide peptidase (SPP) from the most virulent human malaria parasite, Plasmodium falciparum, in the process of invasion where it has been proposed to function in the cleavage of the erythrocyte cytoskeletal protein Band 3. The role of a traditionally endoplasmic reticulum (ER) protease in the process of red blood cell invasion is unexpected. Here, using a combination of molecular, cellular and chemical approaches we provide evidence that PfSPP is, instead, a bona fide ER‐resident peptidase that remains intracellular throughout the invasion process. Furthermore, SPP‐specific drug inhibition has no effect on erythrocyte invasion whilst having low micromolar potency against intra‐erythrocytic development. Contrary to previous reports, these results show that PfSPP plays no role in erythrocyte invasion. Nonetheless, PfSPP clearly represents a potential chemotherapeutic target to block parasite growth, supporting ongoing efforts to develop antimalarial‐targeting protein maturation and trafficking during intra‐erythrocytic development.
Trends in Parasitology | 2012
Ben J. Woodcroft; Paul J. McMillan; Chaitali Dekiwadia; Leann Tilley; Stuart A. Ralph
Parasites from the phylum Apicomplexa include causative agents of serious diseases including malaria (Plasmodium spp.) and toxoplasmosis (Toxoplasma gondii). Apicomplexan parasites infect thousands of types of animal cells and send their proteins to an array of compartments within their own cell, as well as exporting proteins into and beyond their host cell. Ascertaining destinations to which individual proteins are delivered allows researchers to better understand parasite biology and to identify potential targets for therapeutic interventions. Our toolkit for establishing subcellular locations of apicomplexan proteins is becoming more extensive and specialized, and here we review developments in this technology.