Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chang-Guo Zhan is active.

Publication


Featured researches published by Chang-Guo Zhan.


Molecular Cancer Therapeutics | 2008

A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells

Tao Zhang; Adel Hamza; Xianhua Cao; Bing Wang; Shuwen Yu; Chang-Guo Zhan; Duxin Sun

Pancreatic cancer is an aggressive disease with multiple biochemical and genetic alterations. Thus, a single agent to hit one molecular target may not be sufficient to treat this disease. The purpose of this study is to identify a novel Hsp90 inhibitor to disrupt protein-protein interactions of Hsp90 and its cochaperones for down-regulating many oncogenes simultaneously against pancreatic cancer cells. Here, we reported that celastrol disrupted Hsp90-Cdc37 interaction in the superchaperone complex to exhibit antitumor activity in vitro and in vivo. Molecular docking and molecular dynamic simulations showed that celastrol blocked the critical interaction of Glu33 (Hsp90) and Arg167 (Cdc37). Immunoprecipitation confirmed that celastrol (10 μmol/L) disrupted the Hsp90-Cdc37 interaction in the pancreatic cancer cell line Panc-1. In contrast to classic Hsp90 inhibitor (geldanamycin), celastrol (0.1-100 μmol/L) did not interfere with ATP binding to Hsp90. However, celastrol (1-5 μmol/L) induced Hsp90 client protein degradation (Cdk4 and Akt) by 70% to 80% and increased Hsp70 expression by 12-fold. Celastrol induced apoptosis in vitro and significantly inhibited tumor growth in Panc-1 xenografts. Moreover, celastrol (3 mg/kg) effectively suppressed tumor metastasis by more than 80% in RIP1-Tag2 transgenic mouse model with pancreatic islet cell carcinogenesis. The data suggest that celastrol is a novel Hsp90 inhibitor to disrupt Hsp90-Cdc37 interaction against pancreatic cancer cells. [Mol Cancer Ther 2008;7(1):162–70]


Scientific Reports | 2016

Molecular Mechanism: The Human Dopamine Transporter Histidine 547 Regulates Basal and HIV-1 Tat Protein-Inhibited Dopamine Transport

Pamela M. Quizon; Wei-Lun Sun; Yaxia Yuan; Narasimha M. Midde; Chang-Guo Zhan; Jun Zhu

Abnormal dopaminergic transmission has been implicated as a risk determinant of HIV-1-associated neurocognitive disorders. HIV-1 Tat protein increases synaptic dopamine (DA) levels by directly inhibiting DA transporter (DAT) activity, ultimately leading to dopaminergic neuron damage. Through integrated computational modeling prediction and experimental validation, we identified that histidine547 on human DAT (hDAT) is critical for regulation of basal DA uptake and Tat-induced inhibition of DA transport. Compared to wild type hDAT (WT hDAT), mutation of histidine547 (H547A) displayed a 196% increase in DA uptake. Other substitutions of histidine547 showed that DA uptake was not altered in H547R but decreased by 99% in H547P and 60% in H547D, respectively. These mutants did not alter DAT surface expression or surface DAT binding sites. H547 mutants attenuated Tat-induced inhibition of DA transport observed in WT hDAT. H547A displays a differential sensitivity to PMA- or BIM-induced activation or inhibition of DAT function relative to WT hDAT, indicating a change in basal PKC activity in H547A. These findings demonstrate that histidine547 on hDAT plays a crucial role in stabilizing basal DA transport and Tat-DAT interaction. This study provides mechanistic insights into identifying targets on DAT for Tat binding and improving DAT-mediated dysfunction of DA transmission.


Biochemical Pharmacology | 2010

Withaferin A targets heat shock protein 90 in pancreatic cancer cells.

Yanke Yu; Adel Hamza; Tao Zhang; Mancang Gu; Peng Zou; Bryan Newman; Yanyan Li; A. A. Leslie Gunatilaka; Chang-Guo Zhan; Duxin Sun

The purpose of this study is to investigate the efficacy and the mechanism of Hsp90 inhibition of Withaferin A (WA), a steroidal lactone occurring in Withania somnifera, in pancreatic cancer in vitro and in vivo. Withaferin A exhibited potent antiproliferative activity against pancreatic cancer cells in vitro (with IC(50)s of 1.24, 2.93 and 2.78 microM) in pancreatic cancer cell lines Panc-1, MiaPaCa2 and BxPc3, respectively. Annexin V staining showed that WA induced significant apoptosis in Panc-1 cells in a dose-dependent manner. Western blotting demonstrated that WA inhibited Hsp90 chaperone activity to induce degradation of Hsp90 client proteins (Akt, Cdk4 and glucocorticoid receptor), which was reversed by the proteasomal inhibitor, MG132. WA-biotin pull down assay of Hsp90 using Panc-1 cancer cell lysates and purified Hsp90 showed that WA-biotin binds to C-terminus of Hsp90 which was competitively blocked by unlabeled WA. Co-immunoprecipitation exhibited that WA (10 microM) disrupted Hsp90-Cdc37 complexes from 1 to 24h post-treatment, while it neither blocked ATP binding to Hsp90, nor changed Hsp90-P23 association. WA (3, 6mg/kg) inhibited tumor growth in pancreatic Panc-1 xenografts by 30% and 58%, respectively. These data demonstrate that Withaferin A binds Hsp90, inhibits Hsp90 chaperone activity through an ATP-independent mechanism, results in Hsp90 client protein degradation, and exhibits in vivo anticancer activity against pancreatic cancer.


Journal of the American Chemical Society | 2008

Most Efficient Cocaine Hydrolase Designed by Virtual Screening of Transition States

Fang Zheng; Wenchao Yang; Mei-Chuan Ko; Junjun Liu; Hoon Cho; Daquan Gao; Min Tong; Hsin-Hsiung Tai; James H. Woods; Chang-Guo Zhan

Cocaine is recognized as the most reinforcing of all drugs of abuse. There is no anticocaine medication available. The disastrous medical and social consequences of cocaine addiction have made the development of an anticocaine medication a high priority. It has been recognized that an ideal anticocaine medication is one that accelerates cocaine metabolism producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e., cocaine hydrolysis catalyzed by plasma enzyme butyrylcholinesterase (BChE). However, wild-type BChE has a low catalytic efficiency against the abused cocaine. Design of a high-activity enzyme mutant is extremely challenging, particularly when the chemical reaction process is rate-determining for the enzymatic reaction. Here we report the design and discovery of a high-activity mutant of human BChE by using a novel, systematic computational design approach based on transition-state simulations and activation energy calculations. The novel computational design approach has led to discovery of the most efficient cocaine hydrolase, i.e., a human BChE mutant with an approximately 2000-fold improved catalytic efficiency, promising for therapeutic treatment of cocaine overdose and addiction as an exogenous enzyme in human. The encouraging discovery resulted from the computational design not only provides a promising anticocaine medication but also demonstrates that the novel, generally applicable computational design approach is promising for rational enzyme redesign and drug discovery.


Journal of the American Chemical Society | 2010

Subnanomolar Inhibitor of Cytochrome bc1 Complex Designed by Optimizing Interaction with Conformationally Flexible Residues

Pei-Liang Zhao; Le Wang; Xiao-Lei Zhu; Xiaoqin Huang; Chang-Guo Zhan; Jia-Wei Wu; Guang-Fu Yang

Cytochrome bc(1) complex (EC 1.10.2.2, bc(1)), an essential component of the cellular respiratory chain and the photosynthetic apparatus in photosynthetic bacteria, has been identified as a promising target for new drugs and agricultural fungicides. X-ray diffraction structures of the free bc(1) complex and its complexes with various inhibitors revealed that the phenyl group of Phe274 in the binding pocket exhibited significant conformational flexibility upon different inhibitors binding to optimize respective pi-pi interactions, whereas the side chains of other hydrophobic residues showed conformational stability. Therefore, in the present study, a strategy of optimizing the pi-pi interaction with conformationally flexible residues was proposed to design and discover new bc(1) inhibitors with a higher potency. Eight new compounds were designed and synthesized, among which compound 5c, with a K(i) value of 570 pM, was identified as the most promising drug or fungicide candidate, significantly more potent than the commercially available bc(1) inhibitors, including azoxystrobin (AZ), kresoxim-methyl (KM), and pyraclostrobin (PY). To our knowledge, this is the first bc(1) inhibitor discovered from structure-based design with a potency of subnanomolar K(i) value. For all of the compounds synthesized and assayed, the calculated binding free energies correlated reasonably well with the binding free energies derived from the experimental K(i) values, with a correlation coefficient of r(2) = 0.89. The further inhibitory kinetics studies revealed that 5c is a noncompetitive inhibitor with respect to substrate cytochrome c, but it is a competitive inhibitor with respect to substrate ubiquinol. Due to its subnanomolar K(i) potency and slow dissociation rate constant (k(-0) = 0.00358 s(-1)), 5c could be used as a specific probe for further elucidation of the mechanism of bc(1) function and as a new lead compound for future drug discovery.


Molecular Pharmacology | 2009

Thermostable Variants of Cocaine Esterase for Long-Time Protection against Cocaine Toxicity

Daquan Gao; Diwahar Narasimhan; Joanne Macdonald; Remy L. Brim; Mei-Chuan Ko; Donald W. Landry; James H. Woods; Roger K. Sunahara; Chang-Guo Zhan

Enhancing cocaine metabolism by administration of cocaine esterase (CocE) has been recognized as a promising treatment strategy for cocaine overdose and addiction, because CocE is the most efficient native enzyme for metabolizing the naturally occurring cocaine yet identified. A major obstacle to the clinical application of CocE is the thermoinstability of native CocE with a half-life of only a few minutes at physiological temperature (37°C). Here we report thermostable variants of CocE developed through rational design using a novel computational approach followed by in vitro and in vivo studies. This integrated computational-experimental effort has yielded a CocE variant with a ∼30-fold increase in plasma half-life both in vitro and in vivo. The novel design strategy can be used to develop thermostable mutants of any protein.


Journal of the American Chemical Society | 2012

Fundamental Reaction Pathway and Free Energy Profile for Inhibition of Proteasome by Epoxomicin

Donghui Wei; Beilei Lei; Mingsheng Tang; Chang-Guo Zhan

First-principles quantum mechanical/molecular mechanical free energy calculations have been performed to provide the first detailed computational study on the possible mechanisms for reaction of proteasome with a representative peptide inhibitor, Epoxomicin (EPX). The calculated results reveal that the most favorable reaction pathway consists of five steps. The first is a proton transfer process, activating Thr1-O(γ) directly by Thr1-N(z) to form a zwitterionic intermediate. The next step is nucleophilic attack on the carbonyl carbon of EPX by the negatively charged Thr1-O(γ) atom, followed by a proton transfer from Thr1-N(z) to the carbonyl oxygen of EPX (third step). Then, Thr1-N(z) attacks on the carbon of the epoxide group of EPX, accompanied by the epoxide ring-opening (S(N)2 nucleophilic substitution) such that a zwitterionic morpholino ring is formed between residue Thr1 and EPX. Finally, the product of morpholino ring is generated via another proton transfer. Noteworthy, Thr1-O(γ) can be activated directly by Thr1-N(z) to form the zwitterionic intermediate (with a free energy barrier of only 9.9 kcal/mol), and water cannot assist the rate-determining step, which is remarkably different from the previous perception that a water molecule should mediate the activation process. The fourth reaction step has the highest free energy barrier (23.6 kcal/mol) which is reasonably close to the activation free energy (∼21-22 kcal/mol) derived from experimental kinetic data. The obtained novel mechanistic insights should be valuable for not only future rational design of more efficient proteasome inhibitors but also understanding the general reaction mechanism of proteasome with a peptide or protein.


Journal of Pharmacology and Experimental Therapeutics | 2009

Anxiolytic Effects of Phosphodiesterase-2 Inhibitors Associated with Increased cGMP Signaling

Anbrin Masood; Ying Huang; Hassan Hajjhussein; Lan Xiao; Hao Li; Wei Wang; Adel Hamza; Chang-Guo Zhan; James M. O'Donnell

Phosphodiesterase (PDE)-2 is a component of the nitric-oxide synthase (NOS)/guanylyl cyclase signaling pathway in the brain. Given recent evidence that pharmacologically induced changes in NO-cGMP signaling can affect anxiety-related behaviors, the effects of the PDE2 inhibitors (2-(3,4-dimethoxybenzyl)-7-det-5-methylimidazo-[5,1-f][1,2,4]triazin-4(3H)-one) (Bay 60-7550) and 3-(8-methoxy-1-methyl-2-oxo-7-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-5-yl)benzamide (ND7001), as well as modulators of NO, were assessed on cGMP signaling in neurons and on the behavior of mice in the elevated plus-maze, hole-board, and open-field tests, well established procedures for the evaluation of anxiolytics. Bay 60-7550 (1 μM) and ND7001 (10 μM) increased basal and N-methyl-d-aspartate- or detanonoate-stimulated cGMP in primary cultures of rat cerebral cortical neurons; Bay 60-7550, but not ND7001, also increased cAMP. Increased cGMP signaling, either by administration of the PDE2 inhibitors Bay 60-7550 (0.5, 1, and 3 mg/kg) or ND7001 (1 mg/kg), or the NO donor detanonoate (0.5 mg/kg), antagonized the anxiogenic effects of restraint stress on behavior in the three tests. These drugs also produced anxiolytic effects on behavior in nonstressed mice in the elevated plus-maze and hole-board tests; these effects were antagonized by the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (20 mg/kg). By contrast, the NOS inhibitor Nω-nitro-l-arginine methyl ester (50 mg/kg), which reduces cGMP signaling, produced anxiogenic effects similar to restraint stress. Overall, the present behavioral and neurochemical data suggest that PDE2 may be a novel pharmacological target for the development of drugs for the treatment of anxiety disorders.


Molecular Pharmacology | 2011

Design, preparation, and characterization of high-activity mutants of human butyrylcholinesterase specific for detoxification of cocaine.

Liu Xue; Mei-Chuan Ko; Min Tong; Wenchao Yang; Shurong Hou; Lei Fang; Junjun Liu; Fang Zheng; James H. Woods; Hsin-Hsiung Tai; Chang-Guo Zhan

Cocaine is a widely abused drug without a U.S. Food and Drug Administration-approved medication. There is a recognized, promising anticocaine medication to accelerate cocaine metabolism, producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway [i.e., cocaine hydrolysis catalyzed by butyrylcholinesterase (BChE) in plasma]. An ideal, therapeutically valuable mutant of human BChE should have not only a significantly improved catalytic activity against (−)-cocaine but also certain selectivity for (−)-cocaine over neurotransmitter acetylcholine (ACh), such that one would not expect systemic administration of the BChE mutant to interrupt cholinergic transmission. The present study accounting for the mutation-caused changes of the catalytic activities of BChE against both (−)-cocaine and ACh by means of molecular modeling and site-directed mutagenesis has led to identification of three BChE mutants that have not only a considerably improved catalytic efficiency against (−)-cocaine but also the desirable selectivity for (−)-cocaine over ACh. Two representative BChE mutants have been confirmed to be potent in actual protection of mice from acute toxicity (convulsion and lethality) of a lethal dose of cocaine (180 mg/kg). Pretreatment with the BChE mutant (i.e., 1 min before cocaine administration) dose-dependently protected mice against cocaine-induced convulsions and lethality. In particular, all mice pretreated with the mutant (e.g., 0.02 mg or more of A199S/F227A/S287G/A328W/E441D BChE) survived. The in vivo data reveal the primary factor (i.e., the relative catalytic efficiency), determining the efficacy in practical protection of mice from the acute cocaine toxicity and future direction for further improving the efficacy of the enzyme in the cocaine overdose treatment.


Journal of the American Chemical Society | 2008

Modeling the catalysis of anti-cocaine catalytic antibody: competing reaction pathways and free energy barriers.

Yongmei Pan; Daquan Gao; Chang-Guo Zhan

The competing reaction pathways and the corresponding free energy barriers for cocaine hydrolysis catalyzed by an anti-cocaine catalytic antibody, mAb15A10, were studied by using a novel computational strategy based on the binding free energy calculations on the antibody binding with cocaine and transition states. The calculated binding free energies were used to evaluate the free energy barrier shift from the cocaine hydrolysis in water to the antibody-catalyzed cocaine hydrolysis for each reaction pathway. The free energy barriers for the antibody-catalyzed cocaine hydrolysis were predicted to be the corresponding free energy barriers for the cocaine hydrolysis in water plus the calculated free energy barrier shifts. The calculated free energy barrier shift of -6.87 kcal/mol from the dominant reaction pathway of the cocaine benzoyl ester hydrolysis in water to the dominant reaction pathway of the antibody-catalyzed cocaine hydrolysis is in good agreement with the experimentally derived free energy barrier shift of -5.93 kcal/mol. The calculated mutation-caused shifts of the free energy barrier are also reasonably close to the available experimental activity data. The good agreement suggests that the protocol for calculating the free energy barrier shift from the cocaine hydrolysis in water to the antibody-catalyzed cocaine hydrolysis may be used in future rational design of possible high-activity mutants of the antibody as anti-cocaine therapeutics. The general strategy of the free energy barrier shift calculation may also be valuable in studying a variety of chemical reactions catalyzed by other antibodies or proteins through noncovalent bonding interactions with the substrates.

Collaboration


Dive into the Chang-Guo Zhan's collaboration.

Top Co-Authors

Avatar

Fang Zheng

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Adel Hamza

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junjun Liu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Guang-Fu Yang

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Daquan Gao

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yaxia Yuan

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Shurong Hou

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Lei Fang

University of Kentucky

View shared research outputs
Researchain Logo
Decentralizing Knowledge