Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles A. Stock is active.

Publication


Featured researches published by Charles A. Stock.


PLOS ONE | 2012

Pathways between Primary Production and Fisheries Yields of Large Marine Ecosystems

Kevin D. Friedland; Charles A. Stock; Kenneth F. Drinkwater; Jason S. Link; Robert T. Leaf; Burton V. Shank; Julie M. Rose; Cynthia H. Pilskaln; Michael J. Fogarty

The shift in marine resource management from a compartmentalized approach of dealing with resources on a species basis to an approach based on management of spatially defined ecosystems requires an accurate accounting of energy flow. The flow of energy from primary production through the food web will ultimately limit upper trophic-level fishery yields. In this work, we examine the relationship between yield and several metrics including net primary production, chlorophyll concentration, particle-export ratio, and the ratio of secondary to primary production. We also evaluate the relationship between yield and two additional rate measures that describe the export of energy from the pelagic food web, particle export flux and mesozooplankton productivity. We found primary production is a poor predictor of global fishery yields for a sample of 52 large marine ecosystems. However, chlorophyll concentration, particle-export ratio, and the ratio of secondary to primary production were positively associated with yields. The latter two measures provide greater mechanistic insight into factors controlling fishery production than chlorophyll concentration alone. Particle export flux and mesozooplankton productivity were also significantly related to yield on a global basis. Collectively, our analyses suggest that factors related to the export of energy from pelagic food webs are critical to defining patterns of fishery yields. Such trophic patterns are associated with temperature and latitude and hence greater yields are associated with colder, high latitude ecosystems.


Global Biogeochemical Cycles | 2016

How well do global ocean biogeochemistry models simulate dissolved iron distributions

Alessandro Tagliabue; Olivier Aumont; Ros M Death; John P. Dunne; Stephanie Dutkiewicz; Eric D. Galbraith; Kazuhiro Misumi; J. Keith Moore; Andy Ridgwell; Elliot Sherman; Charles A. Stock; Marcello Vichi; Christoph Völker; Andrew Yool

Numerical models of ocean biogeochemistry are relied upon to make projections about the impact of climate change on marine resources and test hypotheses regarding the drivers of past changes in climate and ecosystems. In large areas of the ocean, iron availability regulates the functioning of marine ecosystems and hence the ocean carbon cycle. Accordingly, our ability to quantify the drivers and impacts of fluctuations in ocean ecosystems and carbon cycling in space and time relies on first achieving an appropriate representation of the modern marine iron cycle in models. When the iron distributions from 13 global ocean biogeochemistry models are compared against the latest oceanic sections from the GEOTRACES program, we find that all models struggle to reproduce many aspects of the observed spatial patterns. Models that reflect the emerging evidence for multiple iron sources or subtleties of its internal cycling perform much better in capturing observed features than their simpler contemporaries, particularly in the ocean interior. We show that the substantial uncertainty in the input fluxes of iron results in a very wide range of residence times across models, which has implications for the response of ecosystems and global carbon cycling to perturbations. Given this large uncertainty, iron fertilization experiments based on any single current generation model should be interpreted with caution. Improvements to how such models represent iron scavenging and also biological cycling are needed to raise confidence in their projections of global biogeochemical change in the ocean.


The ISME Journal | 2015

A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes

Joshua S. Weitz; Charles A. Stock; Steven W. Wilhelm; Lydia Bourouiba; Maureen L. Coleman; Alison Buchan; Michael J. Follows; Jed A. Fuhrman; Luis F. Jover; Jay T. Lennon; Mathias Middelboe; Derek L. Sonderegger; Curtis A. Suttle; Bradford Taylor; T. Frede Thingstad; William H. Wilson; K. Eric Wommack

Viral lysis of microbial hosts releases organic matter that can then be assimilated by nontargeted microorganisms. Quantitative estimates of virus-mediated recycling of carbon in marine waters, first established in the late 1990s, were originally extrapolated from marine host and virus densities, host carbon content and inferred viral lysis rates. Yet, these estimates did not explicitly incorporate the cascade of complex feedbacks associated with virus-mediated lysis. To evaluate the role of viruses in shaping community structure and ecosystem functioning, we extend dynamic multitrophic ecosystem models to include a virus component, specifically parameterized for processes taking place in the ocean euphotic zone. Crucially, we are able to solve this model analytically, facilitating evaluation of model behavior under many alternative parameterizations. Analyses reveal that the addition of a virus component promotes the emergence of complex communities. In addition, biomass partitioning of the emergent multitrophic community is consistent with well-established empirical norms in the surface oceans. At steady state, ecosystem fluxes can be probed to characterize the effects that viruses have when compared with putative marine surface ecosystems without viruses. The model suggests that ecosystems with viruses will have (1) increased organic matter recycling, (2) reduced transfer to higher trophic levels and (3) increased net primary productivity. These model findings support hypotheses that viruses can have significant stimulatory effects across whole-ecosystem scales. We suggest that existing efforts to predict carbon and nutrient cycling without considering virus effects are likely to miss essential features of marine food webs that regulate global biogeochemical cycles.


Nature microbiology | 2016

Re-examination of the relationship between marine virus and microbial cell abundances.

Charles H. Wigington; Derek L. Sonderegger; Corina P. D. Brussaard; Alison Buchan; Jan F. Finke; Jed A. Fuhrman; Jay T. Lennon; Mathias Middelboe; Curtis A. Suttle; Charles A. Stock; William H. Wilson; K.E. Wommack; Steven W. Wilhelm; Joshua S. Weitz

Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 108 per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,671 microbial cell and virus abundance estimates from 25 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from ‘representative’ abundances require substantial refinement to be extrapolated to regional or global scales.


PLOS ONE | 2012

Climate driven egg and hatchling mortality threatens survival of eastern Pacific leatherback turtles.

Pilar Santidrián Tomillo; Vincent S. Saba; Gabriela S. Blanco; Charles A. Stock; Frank V. Paladino; James R. Spotila

Egg-burying reptiles need relatively stable temperature and humidity in the substrate surrounding their eggs for successful development and hatchling emergence. Here we show that egg and hatchling mortality of leatherback turtles (Dermochelys coriacea) in northwest Costa Rica were affected by climatic variability (precipitation and air temperature) driven by the El Niño Southern Oscillation (ENSO). Drier and warmer conditions associated with El Niño increased egg and hatchling mortality. The fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) projects a warming and drying in Central America and other regions of the World, under the SRES A2 development scenario. Using projections from an ensemble of global climate models contributed to the IPCC report, we project that egg and hatchling survival will rapidly decline in the region over the next 100 years by ∼50–60%, due to warming and drying in northwestern Costa Rica, threatening the survival of leatherback turtles. Warming and drying trends may also threaten the survival of sea turtles in other areas affected by similar climate changes.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities

Andrew D. Barton; Andrew J. Irwin; Zoe V. Finkel; Charles A. Stock

Significance Phytoplankton play essential roles in marine food webs and global biogeochemical cycles, yet the responses of individual species and entire phytoplankton communities to anthropogenic climate change in the coming century remain uncertain. Here we map the biogeographies of commonly observed North Atlantic phytoplankton and compare their historical (1951–2000) and projected future ranges (2051–2100). We find that individual species and entire communities move in space, or shift, and that communities internally reassemble, or shuffle. Over the coming century, most but not all studied species shift northeastward in the basin, moving at a rate faster than previously estimated. These pronounced ecological changes are driven by dynamic changes in ocean circulation and surface conditions, rather than just warming temperatures alone. Anthropogenic climate change has shifted the biogeography and phenology of many terrestrial and marine species. Marine phytoplankton communities appear sensitive to climate change, yet understanding of how individual species may respond to anthropogenic climate change remains limited. Here, using historical environmental and phytoplankton observations, we characterize the realized ecological niches for 87 North Atlantic diatom and dinoflagellate taxa and project changes in species biogeography between mean historical (1951–2000) and future (2051–2100) ocean conditions. We find that the central positions of the core range of 74% of taxa shift poleward at a median rate of 12.9 km per decade (km⋅dec−1), and 90% of taxa shift eastward at a median rate of 42.7 km⋅dec−1. The poleward shift is faster than previously reported for marine taxa, and the predominance of longitudinal shifts is driven by dynamic changes in multiple environmental drivers, rather than a strictly poleward, temperature-driven redistribution of ocean habitats. A century of climate change significantly shuffles community composition by a basin-wide median value of 16%, compared with seasonal variations of 46%. The North Atlantic phytoplankton community appears poised for marked shift and shuffle, which may have broad effects on food webs and biogeochemical cycles.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Reconciling fisheries catch and ocean productivity

Charles A. Stock; Jasmin G. John; Ryan R. Rykaczewski; Rebecca G. Asch; William W. L. Cheung; John P. Dunne; Kevin D. Friedland; Vicky W. Y. Lam; Jorge L. Sarmiento; Reg Watson

Significance Phytoplankton provide the energy that sustains marine fish populations. The relationship between phytoplankton productivity and fisheries catch, however, is complicated by uncertainty in catch estimates, fishing effort, and marine food web dynamics. We enlist global data sources and a high-resolution earth system model to address these uncertainties. Results show that cross-ecosystem fisheries catch differences far exceeding differences in phytoplankton production can be reconciled with fishing effort and variations in marine food web structure and energy transfer efficiency. Food web variations explaining contemporary fisheries catch act to amplify projected catch trends under climate change, suggesting catch changes that may exceed a factor of 2 for some regions. Failing to account for this would hinder adaptation to climate change. Photosynthesis fuels marine food webs, yet differences in fish catch across globally distributed marine ecosystems far exceed differences in net primary production (NPP). We consider the hypothesis that ecosystem-level variations in pelagic and benthic energy flows from phytoplankton to fish, trophic transfer efficiencies, and fishing effort can quantitatively reconcile this contrast in an energetically consistent manner. To test this hypothesis, we enlist global fish catch data that include previously neglected contributions from small-scale fisheries, a synthesis of global fishing effort, and plankton food web energy flux estimates from a prototype high-resolution global earth system model (ESM). After removing a small number of lightly fished ecosystems, stark interregional differences in fish catch per unit area can be explained (r = 0.79) with an energy-based model that (i) considers dynamic interregional differences in benthic and pelagic energy pathways connecting phytoplankton and fish, (ii) depresses trophic transfer efficiencies in the tropics and, less critically, (iii) associates elevated trophic transfer efficiencies with benthic-predominant systems. Model catch estimates are generally within a factor of 2 of values spanning two orders of magnitude. Climate change projections show that the same macroecological patterns explaining dramatic regional catch differences in the contemporary ocean amplify catch trends, producing changes that may exceed 50% in some regions by the end of the 21st century under high-emissions scenarios. Models failing to resolve these trophodynamic patterns may significantly underestimate regional fisheries catch trends and hinder adaptation to climate change.


Global Biogeochemical Cycles | 2016

Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors

Thomas L. Frölicher; Keith B. Rodgers; Charles A. Stock; William W. L. Cheung

Future projections of potential ocean ecosystem stressors, such as acidification, warming, deoxygenation and changes in ocean productivity, are uncertain due to incomplete understanding of fundamental processes, internal climate variability, and divergent carbon emissions scenarios. This complicates climate change impact assessments. We evaluate the relative importance of these uncertainty sources in projections of potential stressors as a function of projection lead-time and spatial scale. Internally generated climate variability is the dominant source of uncertainty in mid-to-low latitudes and in most coastal Large Marine Ecosystems over the next few decades, suggesting irreducible uncertainty inherent in these short projections. Uncertainty in projections of century-scale global sea surface temperature (SST), global thermocline oxygen, and regional surface pH is dominated by scenario uncertainty, highlighting the critical importance of policy decisions on carbon emissions. In contrast, uncertainty in century-scale projections of net primary productivity (NPP), low oxygen waters, and Southern Ocean SST is dominated by model uncertainty, underscoring the importance of overcoming deficiencies in scientific understanding and improved process representation in Earth system models are critical for making more robust projections of these potential stressors. We also show that changes in the combined potential stressors emerge from the noise in 39% (34 – 44%) of the ocean by 2016-2035 relative to the 1986-2005 reference period and in 54% (50 – 60%) of the ocean by 2076-2095 following a high carbon emissions scenario. Projected large changes in surface pH and SST can be reduced substantially and rapidly with aggressive carbon emission mitigation, but only marginally for oxygen. The regional importance of model uncertainty and internal variability underscores the need for expanded and improved multi-model and large initial condition ensemble projections with Earth system models for evaluating regional marine resource impacts.


Geophysical Research Letters | 2015

A more productive, but different, ocean after mitigation

Jasmin G. John; Charles A. Stock; John P. Dunne

Reversibility studies suggest a lagged recovery of global mean sea surface temperatures after mitigation, raising the question of whether a similar lag is likely for marine net primary production (NPP). Here we assess NPP reversibility with a mitigation scenario in which projected Representative Concentration Pathway (RCP8.5) forcings are applied out to 2100, and then reversed over the course of the following century in a fully coupled carbon-climate earth system model. In contrast to the temperature lag, we find a rapid increase in global mean NPP, including an overshoot to values above contemporary means. The enhanced NPP arises from a transient imbalance between the cooling surface ocean and continued warming in subsurface waters, which weakens upper ocean density gradients, resulting in deeper mixing and enhanced surface nitrate. We also find a marine ecosystem regime shift as persistent silicate depletion results in increased prevalence of large, non-diatom phytoplankton.


Frontiers in Marine Science | 2017

Projecting marine mammal distribution in a changing climate

Gregory K. Silber; Matthew D. Lettrich; Peter O. Thomas; Jason D. Baker; Mark F. Baumgartner; Elizabeth A. Becker; Peter L. Boveng; Dorothy M. Dick; Jerome Fiechter; Jaume Forcada; Karin A. Forney; Roger B. Griffis; Jonathan A. Hare; Alistair J. Hobday; Daniel Howell; Kristin L. Laidre; Nate Mantua; Lori T. Quakenbush; Jarrod A. Santora; Kathleen M. Stafford; Paul D. Spencer; Charles A. Stock; William J. Sydeman; Kyle S. Van Houtan; Robin S. Waples

Climate-related shifts in marine mammal range and distribution have been observed in some populations; however, the nature and magnitude of future responses are uncertain in novel environments projected under climate change. This poses a challenge for agencies charged with management and conservation of these species. Specialized diets, restricted ranges, or reliance on specific substrates or sites (e.g., for pupping) make many marine mammal populations particularly vulnerable to climate change. High-latitude, predominantly ice-obligate, species have experienced some of the largest changes in habitat and distribution and these are expected to continue. Efforts to predict and project marine mammal distributions to date have emphasized data-driven statistical habitat models. These have proven successful for short time-scale (e.g., seasonal) management activities, but confidence that such relationships will hold for multi-decade projections and novel environments is limited. Recent advances in mechanistic modeling of marine mammals (i.e., models that rely on robust physiological and ecological principles expected to hold under climate change) may address this limitation. The success of such approaches rests on continued advances in marine mammal ecology, behavior, and physiology together with improved regional climate projections. The broad scope of this challenge suggests initial priorities be placed on vulnerable species or populations (those already experiencing declines or projected to undergo ecological shifts resulting from climate changes that are consistent across climate projections) and species or populations for which ample data already exist (with the hope that these may inform climate change sensitivities in less well observed species or populations elsewhere). The sustained monitoring networks, novel observations, and modeling advances required to more confidently project marine mammal distributions in a changing climate will ultimately benefit management decisions across time-scales, further promoting the resilience of marine mammal populations.

Collaboration


Dive into the Charles A. Stock's collaboration.

Top Co-Authors

Avatar

John P. Dunne

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Jasmin G. John

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent S. Saba

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William W. L. Cheung

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan A. Hare

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric D. Galbraith

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge