Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chika Nobumori is active.

Publication


Featured researches published by Chika Nobumori.


Cell Metabolism | 2010

GPIHBP1 Is Responsible for the Entry of Lipoprotein Lipase into Capillaries

Brandon S. J. Davies; Anne P. Beigneux; Richard H. Barnes; Yiping Tu; Peter Gin; Michael M. Weinstein; Chika Nobumori; Rakel Nyrén; Ira J. Goldberg; André Bensadoun; Stephen G. Young; Loren G. Fong

The lipolytic processing of triglyceride-rich lipoproteins by lipoprotein lipase (LPL) is the central event in plasma lipid metabolism, providing lipids for storage in adipose tissue and fuel for vital organs such as the heart. LPL is synthesized and secreted by myocytes and adipocytes, but then finds its way into the lumen of capillaries, where it hydrolyzes lipoprotein triglycerides. The mechanism by which LPL reaches the lumen of capillaries has remained an unresolved problem of plasma lipid metabolism. Here, we show that GPIHBP1 is responsible for the transport of LPL into capillaries. In Gpihbp1-deficient mice, LPL is mislocalized to the interstitial spaces surrounding myocytes and adipocytes. Also, we show that GPIHBP1 is located at the basolateral surface of capillary endothelial cells and actively transports LPL across endothelial cells. Our experiments define the function of GPIHBP1 in triglyceride metabolism and provide a mechanism for the transport of LPL into capillaries.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency

Catherine Coffinier; Sandy Y. Chang; Chika Nobumori; Yiping Tu; Emily Farber; Júlia Tóth; Loren G. Fong; Stephen G. Young

Nuclear lamins are components of the nuclear lamina, a structural scaffolding for the cell nucleus. Defects in lamins A and C cause an array of human diseases, including muscular dystrophy, lipodystrophy, and progeria, but no diseases have been linked to the loss of lamins B1 or B2. To explore the functional relevance of lamin B2, we generated lamin B2-deficient mice and found that they have severe brain abnormalities resembling lissencephaly, with abnormal layering of neurons in the cerebral cortex and cerebellum. This neuronal layering abnormality is due to defective neuronal migration, a process that is dependent on the organized movement of the nucleus within the cell. These studies establish an essential function for lamin B2 in neuronal migration and brain development.


Molecular Biology of the Cell | 2011

Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons

Catherine Coffinier; Hea-Jin Jung; Chika Nobumori; Sandy Y. Chang; Yiping Tu; Richard H. Barnes; Yuko Yoshinaga; Pieter J. de Jong; Laurent Vergnes; Karen Reue; Loren G. Fong; Stephen G. Young

Lamin B1 is essential for neuronal migration and progenitor proliferation during the development of the cerebral cortex. The observation of distinct phenotypes of Lmnb1- and Lmnb2-knockout mice and the differences in the nuclear morphology of cortical neurons in vivo suggest that lamin B1 and lamin B2 play distinct functions in the developing brain.


Cell Metabolism | 2014

The GPIHBP1–LPL Complex Is Responsible for the Margination of Triglyceride-Rich Lipoproteins in Capillaries

Chris N. Goulbourne; Peter Gin; Angelica Tatar; Chika Nobumori; Andreas Hoenger; Haibo Jiang; C.R.M. Grovenor; Oludotun Adeyo; Jeffrey D. Esko; Ira J. Goldberg; Karen Reue; Peter Tontonoz; André Bensadoun; Anne P. Beigneux; Stephen G. Young; Loren G. Fong

Triglyceride-rich lipoproteins (TRLs) undergo lipolysis by lipoprotein lipase (LPL), an enzyme that is transported to the capillary lumen by an endothelial cell protein, GPIHBP1. For LPL-mediated lipolysis to occur, TRLs must bind to the lumen of capillaries. This process is often assumed to involve heparan sulfate proteoglycans (HSPGs), but we suspected that TRL margination might instead require GPIHBP1. Indeed, TRLs marginate along the heart capillaries of wild-type but not Gpihbp1⁻/⁻ mice, as judged by fluorescence microscopy, quantitative assays with infrared-dye-labeled lipoproteins, and EM tomography. Both cell-culture and in vivo studies showed that TRL margination depends on LPL bound to GPIHBP1. Notably, the expression of LPL by endothelial cells in Gpihbp1⁻/⁻ mice did not restore defective TRL margination, implying that the binding of LPL to HSPGs is ineffective in promoting TRL margination. Our studies show that GPIHBP1-bound LPL is the main determinant of TRL margination.


Journal of Biological Chemistry | 2010

Direct Synthesis of Lamin A, Bypassing Prelamin A Processing, Causes Misshapen Nuclei in Fibroblasts but No Detectable Pathology in Mice

Catherine Coffinier; Hea-Jin Jung; Ziwei Li; Chika Nobumori; Ui Jeong Yun; Emily Farber; Brandon S. J. Davies; Michael M. Weinstein; Shao H. Yang; Jan Lammerding; Javad N. Farahani; Laurent A. Bentolila; Loren G. Fong; Stephen G. Young

Lamin A, a key component of the nuclear lamina, is generated from prelamin A by four post-translational processing steps: farnesylation, endoproteolytic release of the last three amino acids of the protein, methylation of the C-terminal farnesylcysteine, and finally, endoproteolytic release of the last 15 amino acids of the protein (including the farnesylcysteine methyl ester). The last cleavage step, mediated by ZMPSTE24, releases mature lamin A. This processing scheme has been conserved through vertebrate evolution and is widely assumed to be crucial for targeting lamin A to the nuclear envelope. However, its physiologic importance has never been tested. To address this issue, we created mice with a “mature lamin A-only” allele (LmnaLAO), which contains a stop codon immediately after the last codon of mature lamin A. Thus, LmnaLAO/LAO mice synthesize mature lamin A directly, bypassing prelamin A synthesis and processing. The levels of mature lamin A in LmnaLAO/LAO mice were indistinguishable from those in “prelamin A-only” mice (LmnaPLAO/PLAO), where all of the lamin A is produced from prelamin A. LmnaLAO/LAO exhibited normal body weights and had no detectable disease phenotypes. A higher frequency of nuclear blebs was observed in LmnaLAO/LAO embryonic fibroblasts; however, the mature lamin A in the tissues of LmnaLAO/LAO mice was positioned normally at the nuclear rim. We conclude that prelamin A processing is dispensable in mice and that direct synthesis of mature lamin A has little if any effect on the targeting of lamin A to the nuclear rim in mouse tissues.


Journal of Biological Chemistry | 2008

A Potent HIV Protease Inhibitor, Darunavir, Does Not Inhibit ZMPSTE24 or Lead to an Accumulation of Farnesyl-prelamin A in Cells

Catherine Coffinier; Sarah E. Hudon; Roger Lee; Emily Farber; Chika Nobumori; Jeffrey H. Miner; Douglas A. Andres; H. Peter Spielmann; Christine A. Hrycyna; Loren G. Fong; Stephen G. Young

HIV protease inhibitors (HIV-PIs) are key components of highly active antiretroviral therapy, but they have been associated with adverse side effects, including partial lipodystrophy and metabolic syndrome. We recently demonstrated that a commonly used HIV-PI, lopinavir, inhibits ZMPSTE24, thereby blocking lamin A biogenesis and leading to an accumulation of prelamin A. ZMPSTE24 deficiency in humans causes an accumulation of prelamin A and leads to lipodystrophy and other disease phenotypes. Thus, an accumulation of prelamin A in the setting of HIV-PIs represents a plausible mechanism for some drug side effects. Here we show, with metabolic labeling studies, that lopinavir leads to the accumulation of the farnesylated form of prelamin A. We also tested whether a new and chemically distinct HIV-PI, darunavir, inhibits ZMPSTE24. We found that darunavir does not inhibit the biochemical activity of ZMPSTE24, nor does it lead to an accumulation of farnesyl-prelamin A in cells. This property of darunavir is potentially attractive. However, all HIV-PIs, including darunavir, are generally administered with ritonavir, an HIV-PI that is used to block the metabolism of other HIV-PIs. Ritonavir, like lopinavir, inhibits ZMPSTE24 and leads to an accumulation of prelamin A.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Farnesylation of lamin B1 is important for retention of nuclear chromatin during neuronal migration.

Hea-Jin Jung; Chika Nobumori; Chris N. Goulbourne; Yiping Tu; John M. Lee; Angelica Tatar; Daniel Wu; Yuko Yoshinaga; Pieter J. de Jong; Catherine Coffinier; Loren G. Fong; Stephen G. Young

Significance Both lamin B1 and lamin B2 have farnesyl lipid anchors, but the importance of this lipid modification has been unclear. We addressed that issue with knock-in mouse models. Mice expressing nonfarnesylated lamin B2 developed normally and were healthy. In contrast, mice expressing nonfarnesylated lamin B1 exhibited a severe neurodevelopmental abnormality accompanied by a striking defect in the cell nucleus. During the migration of neurons, the nuclear lamina was pulled free of the chromatin. Thus, farnesylation of lamin B1—but not lamin B2—is crucial for neuronal migration in the brain and for the retention of chromatin within the nuclear lamina. The role of protein farnesylation in lamin A biogenesis and the pathogenesis of progeria has been studied in considerable detail, but the importance of farnesylation for the B-type lamins, lamin B1 and lamin B2, has received little attention. Lamins B1 and B2 are expressed in nearly every cell type from the earliest stages of development, and they have been implicated in a variety of functions within the cell nucleus. To assess the importance of protein farnesylation for B-type lamins, we created knock-in mice expressing nonfarnesylated versions of lamin B1 and lamin B2. Mice expressing nonfarnesylated lamin B2 developed normally and were free of disease. In contrast, mice expressing nonfarnesylated lamin B1 died soon after birth, with severe neurodevelopmental defects and striking nuclear abnormalities in neurons. The nuclear lamina in migrating neurons was pulled away from the chromatin so that the chromatin was left “naked” (free from the nuclear lamina). Thus, farnesylation of lamin B1—but not lamin B2—is crucial for brain development and for retaining chromatin within the bounds of the nuclear lamina during neuronal migration.


Journal of Clinical Investigation | 2016

Modulation of LMNA splicing as a strategy to treat prelamin A diseases

John M. Lee; Chika Nobumori; Yiping Tu; Catherine Choi; Shao H. Yang; Hea-Jin Jung; Timothy A. Vickers; Frank Rigo; C. Frank Bennett; Stephen G. Young; Loren G. Fong

The alternatively spliced products of LMNA, lamin C and prelamin A (the precursor to lamin A), are produced in similar amounts in most tissues and have largely redundant functions. This redundancy suggests that diseases, such as Hutchinson-Gilford progeria syndrome (HGPS), that are caused by prelamin A-specific mutations could be treated by shifting the output of LMNA more toward lamin C. Here, we investigated mechanisms that regulate LMNA mRNA alternative splicing and assessed the feasibility of reducing prelamin A expression in vivo. We identified an exon 11 antisense oligonucleotide (ASO) that increased lamin C production at the expense of prelamin A when transfected into mouse and human fibroblasts. The same ASO also reduced the expression of progerin, the mutant prelamin A protein in HGPS, in fibroblasts derived from patients with HGPS. Mechanistic studies revealed that the exon 11 sequences contain binding sites for serine/arginine-rich splicing factor 2 (SRSF2), and SRSF2 knockdown lowered lamin A production in cells and in murine tissues. Moreover, administration of the exon 11 ASO reduced lamin A expression in wild-type mice and progerin expression in an HGPS mouse model. Together, these studies identify ASO-mediated reduction of prelamin A as a potential strategy to treat prelamin A-specific diseases.


Journal of Biological Chemistry | 2010

Unexpected Expression Pattern for Glycosylphosphatidylinositol-anchored HDL-binding Protein 1 (GPIHBP1) in Mouse Tissues Revealed by Positron Emission Tomography Scanning

Tove Olafsen; Stephen G. Young; Brandon S. J. Davies; Anne P. Beigneux; Constance Voss; Glen Young; Koon-Pong Wong; Richard H. Barnes; Yiping Tu; Michael M. Weinstein; Chika Nobumori; Sung-Cheng Huang; Ira J. Goldberg; André Bensadoun; Anna M. Wu; Loren G. Fong

Glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1), a GPI-anchored endothelial cell protein, binds lipoprotein lipase (LPL) and transports it into the lumen of capillaries where it hydrolyzes triglycerides in lipoproteins. GPIHBP1 is assumed to be expressed mainly within the heart, skeletal muscle, and adipose tissue, the sites where most lipolysis occurs, but the tissue pattern of GPIHBP1 expression has never been evaluated systematically. Because GPIHBP1 is found on the luminal face of capillaries, we predicted that it would be possible to define GPIHBP1 expression patterns with radiolabeled GPIHBP1-specific antibodies and positron emission tomography (PET) scanning. In Gpihbp1−/− mice, GPIHBP1-specific antibodies were cleared slowly from the blood, and PET imaging showed retention of the antibodies in the blood pools (heart and great vessels). In Gpihbp1+/+ mice, the antibodies were cleared extremely rapidly from the blood and, to our surprise, were taken up mainly by lung and liver. Immunofluorescence microscopy confirmed the presence of GPIHBP1 in the capillary endothelium of both lung and liver. In most tissues with high levels of Gpihbp1 expression, Lpl expression was also high, but the lung was an exception (very high Gpihbp1 expression and extremely low Lpl expression). Despite low Lpl transcript levels, however, LPL protein was readily detectable in the lung, suggesting that some of that LPL originates elsewhere and then is captured by GPIHBP1 in the lung. In support of this concept, lung LPL levels were significantly lower in Gpihbp1−/− mice than in Gpihbp1+/+ mice. In addition, Lpl−/− mice expressing human LPL exclusively in muscle contained high levels of human LPL in the lung.


Molecular and Cellular Biology | 2014

An Absence of Nuclear Lamins in Keratinocytes Leads to Ichthyosis, Defective Epidermal Barrier Function, and Intrusion of Nuclear Membranes and Endoplasmic Reticulum into the Nuclear Chromatin

Hea-Jin Jung; Angelica Tatar; Yiping Tu; Chika Nobumori; Shao H. Yang; Chris N. Goulbourne; Harald Herrmann; Loren G. Fong; Stephen G. Young

ABSTRACT B-type lamins (lamins B1 and B2) have been considered to be essential for many crucial functions in the cell nucleus (e.g., DNA replication and mitotic spindle formation). However, this view has been challenged by the observation that an absence of both B-type lamins in keratinocytes had no effect on cell proliferation or the development of skin and hair. The latter findings raised the possibility that the functions of B-type lamins are subserved by lamins A and C. To explore that idea, we created mice lacking all nuclear lamins in keratinocytes. Those mice developed ichthyosis and a skin barrier defect, which led to death from dehydration within a few days after birth. Microscopy of nuclear-lamin-deficient skin revealed hyperkeratosis and a disordered stratum corneum with an accumulation of neutral lipid droplets; however, BrdU incorporation into keratinocytes was normal. Skin grafting experiments confirmed the stratum corneum abnormalities and normal BrdU uptake. Interestingly, the absence of nuclear lamins in keratinocytes resulted in an interspersion of nuclear/endoplasmic reticulum membranes with the chromatin. Thus, a key function of the nuclear lamina is to serve as a “fence” and prevent the incursion of cytoplasmic organelles into the nuclear chromatin.

Collaboration


Dive into the Chika Nobumori's collaboration.

Top Co-Authors

Avatar

Loren G. Fong

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yiping Tu

University of California

View shared research outputs
Top Co-Authors

Avatar

Hea-Jin Jung

University of California

View shared research outputs
Top Co-Authors

Avatar

Angelica Tatar

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shao H. Yang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge