Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chirag Acharya is active.

Publication


Featured researches published by Chirag Acharya.


Blood | 2012

Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma

Yu-Tzu Tai; Betty Y. Chang; Sun Young Kong; Mariateresa Fulciniti; Guang Yang; Yolanda Calle; Yiguo Hu; Jianhong Lin; Jian Jun Zhao; Antonia Cagnetta; Michele Cea; Michael A. Sellitto; Mike Y. Zhong; Qiuju Wang; Chirag Acharya; Daniel R. Carrasco; Joseph J. Buggy; Laurence Elias; Steven P. Treon; William Matsui; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson

Bruton tyrosine kinase (Btk) has a well-defined role in B-cell development, whereas its expression in osteoclasts (OCs) further suggests a role in osteoclastogenesis. Here we investigated effects of PCI-32765, an oral and selective Btk inhibitor, on osteoclastogenesis as well as on multiple myeloma (MM) growth within the BM microenvironment. PCI-32765 blocked RANKL/M-CSF-induced phosphorylation of Btk and downstream PLC-γ2 in OCs, resulting in diminished TRAP5b (ED50 = 17 nM) and bone resorption activity. PCI-32765 also inhibited secretion of multiple cytokines and chemokines from OC and BM stromal cell cultures from both normal donors (ED50 = 0.5 nM) and MM patients. It decreased SDF-1-induced migration of MM cells, and down-regulated MIP1-α/CCL3 in MM cells. It also blocked MM cell growth and survival triggered by IL-6 or coculture with BM stromal cells or OCs in vitro. Importantly, PCI-32765 treatment significantly inhibits in vivo MM cell growth (P < .03) and MM cell-induced osteolysis of implanted human bone chips in SCID mice. Moreover, PCI-32765 prevents in vitro colony formation by stem-like cells from MM patients. Together, these results delineate functional sequelae of Btk activation mediating osteolysis and growth of MM cells, supporting evaluation of PCI-32765 as a novel therapeutic in MM.


Leukemia | 2014

CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications

Yu-Tzu Tai; Yosef Landesman; Chirag Acharya; Yolanda Calle; Mike Zhong; Michele Cea; Daniel Tannenbaum; Antonia Cagnetta; Michaela R. Reagan; Aditya Munshi; William Senapedis; J. R. Saint-Martin; T. Kashyap; Sharon Shacham; Michael Kauffman; Yumei Gu; Lizi Wu; Irene M. Ghobrial; Fenghuang Zhan; Andrew L. Kung; S. A. Schey; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson

The key nuclear export protein CRM1/XPO1 may represent a promising novel therapeutic target in human multiple myeloma (MM). Here we showed that chromosome region maintenance 1 (CRM1) is highly expressed in patients with MM, plasma cell leukemia cells and increased in patient cells resistant to bortezomib treatment. CRM1 expression also correlates with increased lytic bone and shorter survival. Importantly, CRM1 knockdown inhibits MM cell viability. Novel, oral, irreversible selective inhibitors of nuclear export (SINEs) targeting CRM1 (KPT-185, KPT-330) induce cytotoxicity against MM cells (ED50<200 nM), alone and cocultured with bone marrow stromal cells (BMSCs) or osteoclasts (OC). SINEs trigger nuclear accumulation of multiple CRM1 cargo tumor suppressor proteins followed by growth arrest and apoptosis in MM cells. They further block c-myc, Mcl-1, and nuclear factor κB (NF-κB) activity. SINEs induce proteasome-dependent CRM1 protein degradation; concurrently, they upregulate CRM1, p53-targeted, apoptosis-related, anti-inflammatory and stress-related gene transcripts in MM cells. In SCID mice with diffuse human MM bone lesions, SINEs show strong anti-MM activity, inhibit MM-induced bone lysis and prolong survival. Moreover, SINEs directly impair osteoclastogenesis and bone resorption via blockade of RANKL-induced NF-κB and NFATc1, with minimal impact on osteoblasts and BMSCs. These results support clinical development of SINE CRM1 antagonists to improve patient outcome in MM.


Blood | 2014

Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma

Yu-Tzu Tai; Patrick Mayes; Chirag Acharya; Mike Y. Zhong; Michele Cea; Antonia Cagnetta; Jenny L. Craigen; John Yates; Louise Gliddon; William Fieles; Bao Hoang; James Tunstead; Amanda L. Christie; Andrew L. Kung; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson

B-cell maturation antigen (BCMA), highly expressed on malignant plasma cells in human multiple myeloma (MM), has not been effectively targeted with therapeutic monoclonal antibodies. We here show that BCMA is universally expressed on the MM cell surface and determine specific anti-MM activity of J6M0-mcMMAF (GSK2857916), a novel humanized and afucosylated antagonistic anti-BCMA antibody-drug conjugate via a noncleavable linker. J6M0-mcMMAF specifically blocks cell growth via G2/M arrest and induces caspase 3-dependent apoptosis in MM cells, alone and in coculture with bone marrow stromal cells or various effector cells. It strongly inhibits colony formation by MM cells while sparing surrounding BCMA-negative normal cells. J6M0-mcMMAF significantly induces effector cell-mediated lysis against allogeneic or autologous patient MM cells, with increased potency and efficacy compared with the wild-type J6M0 without Fc enhancement. The antibody-dependent cell-mediated cytotoxicity and apoptotic activity of J6M0-mcMMAF is further enhanced by lenalidomide. Importantly, J6M0-mcMMAF rapidly eliminates myeloma cells in subcutaneous and disseminated mouse models, and mice remain tumor-free up to 3.5 months. Furthermore, J6M0-mcMMAF recruits macrophages and mediates antibody-dependent cellular phagocytosis of MM cells. Together, these results demonstrate that GSK2857916 has potent and selective anti-MM activities via multiple cytotoxic mechanisms, providing a promising next-generation immunotherapeutic in this cancer.


Blood | 2013

Intracellular NAD+ depletion enhances bortezomib-induced anti-myeloma activity

Antonia Cagnetta; Michele Cea; Teresa Calimeri; Chirag Acharya; Mariateresa Fulciniti; Yu-Tzu Tai; Teru Hideshima; Dharminder Chauhan; Mike Y. Zhong; Franco Patrone; Alessio Nencioni; Marco Gobbi; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson

We recently demonstrated that Nicotinamide phosphoribosyltransferase (Nampt) inhibition depletes intracellular NAD⁺ content leading, to autophagic multiple myeloma (MM) cell death. Bortezomib has remarkably improved MM patient outcome, but dose-limiting toxicities and development of resistance limit its long-term utility. Here we observed higher Nampt messenger RNA levels in bortezomib-resistant patient MM cells, which correlated with decreased overall survival. We demonstrated that combining the NAD⁺ depleting agent FK866 with bortezomib induces synergistic anti-MM cell death and overcomes bortezomib resistance. This effect is associated with (1) activation of caspase-8, caspase-9, caspase-3, poly (ADP-ribose) polymerase, and downregulation of Mcl-1; (2) enhanced intracellular NAD⁺ depletion; (3) inhibition of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities; (4) inhibition of nuclear factor κB signaling; and (5) inhibition of angiogenesis. Furthermore, Nampt knockdown significantly enhances the anti-MM effect of bortezomib, which can be rescued by ectopically overexpressing Nampt. In a murine xenograft MM model, low-dose combination FK866 and Bortezomib is well tolerated, significantly inhibits tumor growth, and prolongs host survival. Taken together, these findings indicate that intracellular NAD⁺ level represents a major determinant in the ability of bortezomib to induce apoptosis in MM cells and provide proof of concept for the combination with FK866 as a new strategy to enhance sensitivity or overcome resistance to bortezomib.


Leukemia | 2016

SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide.

Jiang H; Chirag Acharya; Gang An; Mike Zhong; Xiaoyan Feng; Lei Wang; Dasilva N; Song Z; Guang Yang; Adrian F; Lugui Qiu; Paul G. Richardson; Nikhil C. Munshi; Yu-Tzu Tai; Kenneth C. Anderson

The anti-CD38 monoclonal antibody SAR650984 (SAR) is showing promising clinical activity in treatment of relapsed and refractory multiple myeloma (MM). Besides effector-mediated antibody-dependent cellular cytotoxicity and complement-mediated cytotoxicity, we here define molecular mechanisms of SAR-directed MM cell death and enhanced anti-MM activity triggered by SAR with Pomalidomide (Pom). Without Fc-cross-linking agents or effector cells, SAR specifically induces homotypic aggregation (HA)-associated cell death in MM cells dependent on the level of cell surface CD38 expression, actin cytoskeleton and membrane lipid raft. SAR and its F(ab)’2 fragments trigger caspase 3/7-dependent apoptosis in MM cells highly expressing CD38, even with p53 mutation. Importantly, SAR specifically induces lysosome-dependent cell death (LCD) by enlarging lysosomes and increasing lysosomal membrane permeabilization associated with leakage of cathepsin B and LAMP-1, regardless of the presence of interleukin-6 or bone marrow stromal cells. Conversely, the lysosomal vacuolar H+-ATPase inhibitor blocks SAR-induced LCD. SAR further upregulates reactive oxygen species. Pom enhances SAR-induced direct and indirect killing even in MM cells resistant to Pom/Len. Taken together, SAR is the first therapeutic monoclonal antibody mediating direct cytotoxicity against MM cells via multiple mechanisms of action. Our data show that Pom augments both direct and effector cell-mediated MM cytotoxicity of SAR, providing the framework for combination clinical trials.


Blood | 2016

Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication.

Gang An; Chirag Acharya; Xiaoyan Feng; Kenneth Wen; Mike Zhong; Li Zhang; Nikhil C. Munshi; Lugui Qiu; Yu-Tzu Tai; Kenneth C. Anderson

The number and activity of osteoclasts (OCs) are strongly enhanced by myeloma cells, leading to significant bone lesions in patients with multiple myeloma (MM). Mechanisms remain elusive as to whether myeloma-supporting OCs also induce suppressive immune bone marrow (BM) microenvironment. Here, we first show that OCs significantly protect MM cells against T-cell-mediated cytotoxicity via direct inhibition of proliferating CD4(+) and CD8(+) T cells. The immune checkpoint molecules programmed death ligand 1 (PD-L1), Galectin-9, herpesvirus entry mediator (HVEM), and CD200, as well as T-cell metabolism regulators indoleamine 2, 3-dioxygenase (IDO), and CD38 are significantly upregulated during osteoclastogenesis. Importantly, the levels of these molecules, except CD38, are higher in OCs than in MM cells. Anti-PD-L1 monoclonal antibody (mAb) and IDO inhibitor partly overcome OC-inhibited T-cell responses against MM cells, confirming their roles in OC-suppressed MM cell lysis by cytotoxic T cells. In addition, Galectin-9 and a proliferation-induced ligand (APRIL), secreted by OCs, are significantly upregulated during osteoclastogenesis. Galectin-9 specifically induces apoptosis of T cells while sparing monocytes and MM cells. APRIL induces PD-L1 expression in MM cells, providing additional immune inhibition by OCs. Moreover, CD38 is significantly upregulated during osteoclastogenesis. When targeted by an anti-CD38 mAb, suppressive T-cell function by OCs is alleviated, associated with downregulation of HVEM and IDO. Taken together, these results define the expression of multiple immune proteins and cytokines in OCs essential for suppressive MM BM milieu. These results further support the combination of targeting these molecules to improve anti-MM immunity.


Blood | 2016

APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment.

Yu-Tzu Tai; Chirag Acharya; Gang An; Michele Moschetta; Mike Y. Zhong; Xiaoyan Feng; Michele Cea; Antonia Cagnetta; Kenneth Wen; Hans van Eenennaam; Andrea van Elsas; Lugui Qiu; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson

Here we show that overexpression or activation of B-cell maturation antigen (BCMA) by its ligand, a proliferation-inducing ligand (APRIL), promotes human multiple myeloma (MM) progression in vivo. BCMA downregulation strongly decreases viability and MM colony formation; conversely, BCMA overexpression augments MM cell growth and survival via induction of protein kinase B (AKT), MAPK, and nuclear factor (NF)-κB signaling cascades. Importantly, BCMA promotes in vivo growth of xenografted MM cells harboring p53 mutation in mice. BCMA-overexpressing tumors exhibit significantly increased CD31/microvessel density and vascular endothelial growth factor compared with paired control tumors. These tumors also express increased transcripts crucial for osteoclast activation, adhesion, and angiogenesis/metastasis, as well as genes mediating immune inhibition including programmed death ligand 1, transforming growth factor β, and interleukin 10. These target genes are consistently induced by paracrine APRIL binding to BCMA on MM cells, which is blocked by an antagonistic anti-APRIL monoclonal antibody hAPRIL01A (01A). 01A is cytotoxic against MM cells even in the presence of protective bone marrow (BM) myeloid cells including osteoclasts, macrophages, and plasmacytoid dendritic cells. 01A further decreases APRIL-induced adhesion and migration of MM cells via blockade of canonical and noncanonical NF-κB pathways. Moreover, 01A prevents in vivo MM cell growth within implanted human bone chips in SCID mice. Finally, the effect of 01A on MM cell viability is enhanced by lenalidomide and bortezomib. Taken together, these data delineate new molecular mechanisms of in vivo MM growth and immunosuppression critically dependent on BCMA and APRIL in the BM microenvironment, further supporting targeting this prominent pathway in MM.


Clinical Cancer Research | 2015

The Impact of Clone Size on the Prognostic Value of Chromosome Aberrations by Fluorescence In Situ Hybridization in Multiple Myeloma

Gang An; Zengjun Li; Yu-Tzu Tai; Chirag Acharya; Qian Li; Xiaoqi Qin; Shuhua Yi; Yan Xu; Xiaoyan Feng; Chengwen Li; Jiawei Zhao; Lihui Shi; Meirong Zang; Shuhui Deng; Weiwei Sui; Mu Hao; Dehui Zou; Yaozhong Zhao; Junyuan Qi; Tao Cheng; Kun Ru; Jianxiang Wang; Kenneth C. Anderson; Lugui Qiu

Purpose: Accumulating evidence indicates that intratumor heterogeneity is prevalent in multiple myeloma and that a collection of multiple, genetically distinct subclones are present within the myeloma cell population. It is not clear whether the size of clonal myeloma populations harboring unique cytogenetic abnormalities carry any additional prognostic value. Experimental Design: We analyzed the prognostic impact of cytogenetic aberrations by fluorescence in situ hybridization at different cutoff values in a cohort of 333 patients with newly diagnosed myeloma and 92 patients with relapsed myeloma. Results: We found that nearly all IgH-related arrangements were observed in a large majority of the purified plasma cells; however, 13q deletion, 17p deletion, and 1q21 amplification appeared in different percentages within the malignant plasma cell population. Based on the size of subclones carrying these cytogenetic aberrations, the patients were divided into four groups: 0%–10%, 10.5%–20%, 20.5%–50%, and >50%. Receiver-operating characteristics analysis was applied to determine the optimal cutoff value with the greatest differential survival and showed that the most powerful clone sizes were 10% for 13q deletion, 50% for 17p deletion, and 20% for 1q21 gains, which provided the best possible cutoffs for predicting poor outcomes. Conclusions: Our study indicated that the impact of clone size on prognostic value varies between specific genetic abnormalities. Prognostic value was observed for even a subgroup of plasma cells harboring the cytogenetic aberration of 13q deletion and 1q21 gains; however, 17p deletion displayed the most powerful cutoff for predicting survival only if the predominant clones harbored the abnormality. Clin Cancer Res; 21(9); 2148–56. ©2015 AACR.


Clinical Cancer Research | 2017

Targeting CD38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma

Xiaoyan Feng; Li Zhang; Chirag Acharya; Gang An; Kenneth Wen; Luqui Qiu; Nikhil C. Munshi; Yu-Tzu Tai; Kenneth C. Anderson

Purpose: We study CD38 levels in immunosuppressive CD4+CD25highFoxp3+ regulatory T cells (Treg) and further define immunomodulating effects of a therapeutic CD38 mAb isatuximab/SAR650984 in multiple myeloma. Experimental Design: We evaluated percentages of CD38-expressing subsets in Tregs from normal donors and multiple myeloma patients. Peripheral blood mononuclear cells (PBMC) were then treated with isatuximab with or without lenalidomide or pomalidomide to identify their impact on the percentage and immunosuppressive activity of Tregs on CD4+CD25− T cells (Tcons). We investigated the mechanism of increased Tregs in multiple myeloma patients in ex vivo cocultures of multiple myeloma cells with PBMCs or Tcons. Results: CD38 expression is higher on Tregs than Tcons from multiple myeloma patients versus normal donors. CD38 levels and the percentages of CD38high Tregs are increased by lenalidomide and pomalidomide. Isatuximab preferentially decreases Treg and increases Tcon frequencies, which is enhanced by pomalidomide/lenalidomide. Isatuximab reduces Foxp3 and IL10 in Tregs and restores proliferation and function of Tcons. It augments multiple myeloma cell lysis by CD8+ T and natural killer cells. Coculture of multiple myeloma cells with Tcons significantly induces Tregs (iTregs), which express even higher CD38, CD25, and FoxP3 than natural Tregs. This is associated with elevated circulating CD38+ Tregs in multiple myeloma patients versus normal donors. Conversely, isatuximab decreases multiple myeloma cell- and bone marrow stromal cell–induced iTreg by inhibiting both cell–cell contact and TGFβ/IL10. Finally, CD38 levels correlate with differential inhibition by isatuximab of Tregs from multiple myeloma versus normal donors. Conclusions: Targeting CD38 by isatuximab can preferentially block immunosuppressive Tregs and thereby restore immune effector function against multiple myeloma. Clin Cancer Res; 23(15); 4290–300. ©2017 AACR.


Leukemia Research | 2014

Role of genotype-based approach in the clinical management of adult acute myeloid leukemia with normal cytogenetics

Antonia Cagnetta; Sophia Adamia; Chirag Acharya; Franco Patrone; Maurizio Miglino; Alessio Nencioni; Marco Gobbi; Michele Cea

Acute myeloid leukemia (AML) is the most common form of acute leukemia affecting adults. Although it is a complex disease driven by numerous genetic and epigenetic abnormalities, nearly 50% of patients exhibit a normal karyotype (CN-AML) with an intermediate cytogenetic risk. However, a widespread genomic analysis has recently shown the recurrence of genomic aberrations in this category (mutations of FLT3, CEBPA, NPM1, RUNX1, TET2, IDH1/2, DNMT3A, ASXL1, MLL and WT1) thus revealing its marked genomic heterogeneity. In this perspective, a global gene expression analysis of AML patients provides an independent prognostic marker to categorize each patient into clinic-pathologic subgroups based on its molecular genetic defects. Consistently such classification, taking into account the uniqueness of each AML patient, furnishes an individualized treatment approach leading a step closer to personalized medicine. Overall the genome-wide analysis of AML patients, by providing novel insights into biology of this tumor, furnishes accurate prognostic markers as well as useful tools for selecting the most appropriate treatment option. Moreover it provides novel therapeutic targets useful to enhance efficacy of the current anti-AML therapeutics. Here we describe the prognostic relevance of such new genetic data and discuss how this approach can be used to improve survival and treatment of AML patients.

Collaboration


Dive into the Chirag Acharya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang An

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Xiaoyan Feng

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Lugui Qiu

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge