Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sabine Cordi is active.

Publication


Featured researches published by Sabine Cordi.


Gastroenterology | 2009

Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9.

Aline Antoniou; Peggy Raynaud; Sabine Cordi; Yiwei Zong; François Tronche; Ben Z. Stanger; Patrick Jacquemin; Christophe E. Pierreux; Frédéric Clotman; Frédéric P. Lemaigre

BACKGROUND & AIMS A number of diseases are characterized by defective formation of the intrahepatic bile ducts. In the embryo, hepatoblasts differentiate to cholangiocytes, which give rise to the bile ducts. Here, we investigated duct development in mouse liver and characterized the role of the SRY-related HMG box transcription factor 9 (SOX9). METHODS We identified SOX9 as a new biliary marker and used it in immunostaining experiments to characterize bile duct morphogenesis. The expression of growth factors was determined by in situ hybridization and immunostaining, and their role was studied on cultured hepatoblasts. SOX9 function was investigated by phenotyping mice with a liver-specific inactivation of Sox9. RESULTS Biliary tubulogenesis started with formation of asymmetrical ductal structures, lined on the portal side by cholangiocytes and on the parenchymal side by hepatoblasts. When the ducts grew from the hilum to the periphery, the hepatoblasts lining the asymmetrical structures differentiated to cholangiocytes, thereby allowing formation of symmetrical ducts lined only by cholangiocytes. We also provide evidence that transforming growth factor-beta promotes differentiation of the hepatoblasts lining the asymmetrical structures. In the absence of SOX9, the maturation of asymmetrical structures into symmetrical ducts was delayed. This was associated with abnormal expression of CCAAT/Enhancer Binding Protein alpha and Homolog of Hairy/Enhancer of Split-1, as well as of the transforming growth factor-beta receptor type II, which are regulators of biliary development. CONCLUSIONS Our results suggest that biliary development proceeds according to a new mode of tubulogenesis characterized by transient asymmetry and whose timing is controlled by SOX9.


Gastroenterology | 2012

Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice

Regina Espanol Suner; Rodolphe Carpentier; Noémi Van Hul; Vanessa Legry; Younes Achouri; Sabine Cordi; Patrick Jacquemin; Frédéric P. Lemaigre; Isabelle A. Leclercq

BACKGROUND & AIMS Self-renewal of mature hepatocytes promotes homeostasis and regeneration of adult liver. However, recent studies have indicated that liver progenitor cells (LPC) could give rise to hepatic epithelial cells during normal turnover of the liver and after acute injury. We investigated the capacity of LPC to differentiate into hepatocytes in vivo and contribute to liver regeneration. METHODS We performed lineage tracing experiments, using mice that express tamoxifen-inducible Cre recombinase under control of osteopontin regulatory region crossed with yelow fluorescent protein reporter mice, to follow the fate of LPC and biliary cells. Adult mice received partial (two-thirds) hepatectomy, acute or chronic administration of carbon tetrachloride (CCl(4)), choline-deficient diet supplemented with ethionine, or 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet. RESULTS LPC and/or biliary cells generated 0.78% and 2.45% of hepatocytes during and upon recovery of mice from liver injury, respectively. Repopulation efficiency by LPC and/or biliary cells increased when extracellular matrix and laminin deposition were reduced. The newly formed hepatocytes integrated into hepatic cords, formed biliary canaliculi, expressed hepato-specific enzymes, accumulated glycogen, and proliferated in response to partial hepatectomy, as neighboring native hepatocytes. By contrast, LPC did not contribute to hepatocyte regeneration during normal liver homeostasis, in response to surgical or toxic loss of liver mass, during chronic liver injury (CCl(4)-induced), or during ductular reactions. CONCLUSIONS LPC or biliary cells terminally differentiate into functional hepatocytes in mice with liver injury.


Gastroenterology | 2011

Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells.

Rodolphe Carpentier; Regina Espanol Suner; Noémi Van Hul; Janel L. Kopp; Jean–Bernard Beaudry; Sabine Cordi; Aline Antoniou; Peggy Raynaud; Sébastien Lepreux; Patrick Jacquemin; Isabelle A. Leclercq; Maike Sander; Frédéric P. Lemaigre

UNLABELLED BACKGROUND& AIMS: Embryonic biliary precursor cells form a periportal sheet called the ductal plate, which is progressively remodeled to generate intrahepatic bile ducts. A limited number of ductal plate cells participate in duct formation; those not involved in duct development are believed to involute by apoptosis. Moreover, cells that express the SRY-related HMG box transcription factor 9 (SOX9), which include the embryonic ductal plate cells, were proposed to continuously supply the liver with hepatic cells. We investigated the role of the ductal plate in hepatic morphogenesis. METHODS Apoptosis and proliferation were investigated by immunostaining of mouse and human fetal liver tissue. The postnatal progeny of SOX9-expressing ductal plate cells was analyzed after genetic labeling, at the ductal plate stage, by Cre-mediated recombination of a ROSA26RYFP reporter allele. Inducible Cre expression was induced by SOX9 regulatory regions, inserted in a bacterial artificial chromosome. Livers were studied from mice under normal conditions and during diet-induced regeneration. RESULTS Ductal plate cells did not undergo apoptosis and showed limited proliferation. They generated cholangiocytes lining interlobular bile ducts, bile ductules, and canals of Hering, as well as periportal hepatocytes. Oval cells that appeared during regeneration also derived from the ductal plate. We did not find that liver homeostasis required a continuous supply of cells from SOX9-expressing progenitors. CONCLUSIONS The ductal plate gives rise to cholangiocytes lining the intrahepatic bile ducts, including its most proximal segments. It also generates periportal hepatocytes and adult hepatic progenitor cells.


Gastroenterology | 2012

A Feedback Loop Between the Liver-Enriched Transcription Factor Network and Mir-122 Controls Hepatocyte Differentiation

Ilaria Laudadio; Isabelle Manfroid; Younes Achouri; Dominic Schmidt; Michael D. Wilson; Sabine Cordi; Lieven Thorrez; Laurent Knoops; Patrick Jacquemin; Frans Schuit; Christophe E. Pierreux; Duncan T. Odom; Bernard Peers; Frédéric P. Lemaigre

BACKGROUND & AIMS Hepatocyte differentiation is controlled by liver-enriched transcription factors (LETFs). We investigated whether LETFs control microRNA expression during development and whether this control is required for hepatocyte differentiation. METHODS Using in vivo DNA binding assays, we identified miR-122 as a direct target of the LETF hepatocyte nuclear factor (HNF) 6. The role and mechanisms of the HNF6-miR-122 gene cascade in hepatocyte differentiation were studied in vivo and in vitro by gain-of-function and loss-of-function experiments, using developing mice and zebrafish as model organisms. RESULTS HNF6 and its paralog Onecut2 are strong transcriptional stimulators of miR-122 expression. Specific levels of miR-122 were required for proper progression of hepatocyte differentiation; miR-122 stimulated the expression of hepatocyte-specific genes and most LETFs, including HNF6. This indicates that HNF6 and miR-122 form a positive feedback loop. Stimulation of hepatocyte differentiation by miR-122 was lost in HNF6-null mice, revealing that a transcription factor can mediate microRNA function. All hepatocyte-specific genes whose expression was stimulated by miR-122 bound HNF6 in vivo, confirming their direct regulation by this factor. CONCLUSIONS Hepatocyte differentiation is directed by a positive feedback loop that includes a transcription factor (HNF6) and a microRNA (miR-122) that are specifically expressed in liver. These findings could lead to methods to induce differentiation of hepatocytes in vitro and improve our understanding of liver cell dedifferentiation in pathologic conditions.


Hepatology | 2011

A classification of ductal plate malformations based on distinct pathogenic mechanisms of biliary dysmorphogenesis

Peggy Raynaud; Joshua M. Tate; Céline Callens; Sabine Cordi; Patrick Vandersmissen; Rodolphe Carpentier; Christine Sempoux; Olivier Devuyst; Christophe E. Pierreux; Pierre J. Courtoy; Karin Dahan; Katty Delbecque; Sébastien Lepreux; Marco Pontoglio; Lisa M. Guay-Woodford; Frédéric P. Lemaigre

Ductal plate malformations (DPMs) are developmental anomalies considered to result from lack of ductal plate remodeling during bile duct morphogenesis. In mice, bile duct development is initiated by the formation of primitive ductal structures lined by two cell types, namely ductal plate cells and hepatoblasts. During ductal plate remodeling, the primitive ductal structures mature to ducts as a result from differentiation of the ductal plate cells and hepatoblasts to cholangiocytes. Here, we report this process is conserved in human fetal liver. These findings prompted us to evaluate how DPMs develop in three mouse models, namely mice with livers deficient in hepatocyte nuclear factor 6 (HNF6), HNF1β, or cystin‐1 (cpk [congenital polycystic kidney] mice). Human liver from a patient with a HNF1B/TCF2 mutation, and from fetuses affected with autosomal recessive polycystic kidney disease (ARPKD) were also analyzed. Despite the epistatic relationship between HNF6, HNF1β, and cystin‐1, the three mouse models displayed distinct morphogenic mechanisms of DPM. They all developed biliary cysts lined by cells with abnormal apicobasal polarity. However, the absence of HNF6 led to an early defect in ductal plate cell differentiation. In HNF1β‐deficient liver, maturation of the primitive ductal structures was impaired. Normal differentiation and maturation but abnormal duct expansion was apparent in cpk mouse livers and in human fetal ARPKD. Conclusion: DPM is the common endpoint of distinct defects initiated at distinct stages of bile duct morphogenesis. Our observations provide a new pathogenic classification of DPM. (HEPATOLOGY 2011;)


Developmental Biology | 2010

Epithelial: Endothelial cross-talk regulates exocrine differentiation in developing pancreas

Christophe E. Pierreux; Sabine Cordi; Anne-Christine Hick; Younes Achouri; Carmen Ruiz de Almodovar; Pierre-Paul Prévot; Pierre J. Courtoy; Peter Carmeliet; Frédéric P. Lemaigre

Endothelial cells are required to initiate pancreas development from the endoderm. They also control the function of endocrine islets after birth. Here we investigate in developing pancreas how the endothelial cells become organized during branching morphogenesis and how their development affects pancreatic cell differentiation. We show that endothelial cells closely surround the epithelial bud at the onset of pancreas morphogenesis. During branching morphogenesis, the endothelial cells become preferentially located near the central (trunk) epithelial cells and remain at a distance from the branch tips where acinar cells differentiate. This correlates with predominant expression of the angiogenic factor vascular endothelial growth factor-A (VEGF-A) in trunk cells. In vivo ablation of VEGF-A expression by pancreas-specific inactivation of floxed Vegfa alleles results in reduced endothelial development and in excessive acinar differentiation. On the contrary, acinar differentiation is repressed when endothelial cells are recruited around tip cells that overexpress VEGF-A. Treatment of embryonic day 12.5 explants with VEGF-A or with VEGF receptor antagonists confirms that acinar development is tightly controlled by endothelial cells. We also provide evidence that endothelial cells repress the expression of Ptf1a, a transcription factor essential for acinar differentiation, and stimulate the expression of Hey-1 and Hey-2, two repressors of Ptf1a activity. In explants, we provide evidence that VEGF-A signaling is required, but not sufficient, to induce endocrine differentiation. In conclusion, our data suggest that, in developing pancreas, epithelial production of VEGF-A determines the spatial organization of endothelial cells which, in turn, limit acinar differentiation of the epithelium.


BMC Developmental Biology | 2009

Mechanism of primitive duct formation in the pancreas and submandibular glands: a role for SDF-1

Anne-Christine Hick; Jonathan van Eyll; Sabine Cordi; Céline Forez; Lara Passante; Hiroshi Kohara; Takashi Nagasawa; Pierre Vanderhaeghen; Pierre J. Courtoy; Guy G. Rousseau; Frédéric P. Lemaigre; Christophe E. Pierreux

BackgroundThe exocrine pancreas is composed of a branched network of ducts connected to acini. They are lined by a monolayered epithelium that derives from the endoderm and is surrounded by mesoderm-derived mesenchyme. The morphogenic mechanisms by which the ductal network is established as well as the signaling pathways involved in this process are poorly understood.ResultsBy morphological analyzis of wild-type and mutant mouse embryos and using cultured embryonic explants we investigated how epithelial morphogenesis takes place and is regulated by chemokine signaling. Pancreas ontogenesis displayed a sequence of two opposite epithelial transitions. During the first transition, the monolayered and polarized endodermal cells give rise to tissue buds composed of a mass of non polarized epithelial cells. During the second transition the buds reorganize into branched and polarized epithelial monolayers that further differentiate into tubulo-acinar glands. We found that the second epithelial transition is controlled by the chemokine Stromal cell-Derived Factor (SDF)-1. The latter is expressed by the mesenchyme, whereas its receptor CXCR4 is expressed by the epithelium. Reorganization of cultured pancreatic buds into monolayered epithelia was blocked in the presence of AMD3100, a SDF-1 antagonist. Analyzis of sdf1 and cxcr4 knockout embryos at the stage of the second epithelial transition revealed transient defective morphogenesis of the ventral and dorsal pancreas. Reorganization of a globular mass of epithelial cells in polarized monolayers is also observed during submandibular glands development. We found that SDF-1 and CXCR4 are expressed in this organ and that AMD3100 treatment of submandibular gland explants blocks its branching morphogenesis.ConclusionIn conclusion, our data show that the primitive pancreatic ductal network, which is lined by a monolayered and polarized epithelium, forms by remodeling of a globular mass of non polarized epithelial cells. Our data also suggest that SDF-1 controls the branching morphogenesis of several exocrine tissues.


Developmental Biology | 2015

Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts.

Alexis Poncy; Aline Antoniou; Sabine Cordi; Christophe E. Pierreux; Patrick Jacquemin; Frédéric P. Lemaigre

In developing liver, cholangiocytes derive from the hepatoblasts and organize to form the bile ducts. Earlier work has shown that the SRY-related High Mobility Group box transcription factor 9 (SOX9) is transiently required for bile duct development, raising the question of the potential involvement of other SOX family members in biliary morphogenesis. Here we identify SOX4 as a new regulator of cholangiocyte development. Liver-specific inactivation of SOX4, combined or not with inactivation of SOX9, affects cholangiocyte differentiation, apico-basal polarity and bile duct formation. Both factors cooperate to control the expression of mediators of the Transforming Growth Factor-β, Notch, and Hippo-Yap signaling pathways, which are required for normal development of the bile ducts. In addition, SOX4 and SOX9 control formation of primary cilia, which are known signaling regulators. The two factors also stimulate secretion of laminin α5, an extracellular matrix component promoting bile duct maturation. We conclude that SOX4 is a new regulator of liver development and that it exerts a pleiotropic control on bile duct development in cooperation with SOX9.


Development | 2014

Prox1 ablation in hepatic progenitors causes defective hepatocyte specification and increases biliary cell commitment

Asha Seth; Jianming Ye; Nanjia Yu; Fanny Guez; David C. Bedford; Geoffrey Neale; Sabine Cordi; Paul K. Brindle; Frédéric P. Lemaigre; Klaus H. Kaestner; Beatriz Sosa-Pineda

The liver has multiple functions that preserve homeostasis. Liver diseases are debilitating, costly and often result in death. Elucidating the developmental mechanisms that establish the liver’s architecture or generate the cellular diversity of this organ should help advance the prevention, diagnosis and treatment of hepatic diseases. We previously reported that migration of early hepatic precursors away from the gut epithelium requires the activity of the homeobox gene Prox1. Here, we show that Prox1 is a novel regulator of cell differentiation and morphogenesis during hepatogenesis. Prox1 ablation in bipotent hepatoblasts dramatically reduced the expression of multiple hepatocyte genes and led to very defective hepatocyte morphogenesis. As a result, abnormal epithelial structures expressing hepatocyte and cholangiocyte markers or resembling ectopic bile ducts developed in the Prox1-deficient liver parenchyma. By contrast, excessive commitment of hepatoblasts into cholangiocytes, premature intrahepatic bile duct morphogenesis, and biliary hyperplasia occurred in periportal areas of Prox1-deficient livers. Together, these abnormalities indicate that Prox1 activity is necessary to correctly allocate cell fates in liver precursors. These results increase our understanding of differentiation anomalies in pathological conditions and will contribute to improving stem cell protocols in which differentiation is directed towards hepatocytes and cholangiocytes.


Differentiation | 2016

Role of β-catenin in development of bile ducts

Sabine Cordi; Cécile Godard; Thoueiba Saandi; Patrick Jacquemin; Satdarshan P.S. Monga; Sabine Colnot; Frédéric P. Lemaigre

Beta-catenin is known to play stage- and cell-specific functions during liver development. However, its role in development of bile ducts has not yet been addressed. Here we used stage-specific in vivo gain- and loss-of-function approaches, as well as lineage tracing experiments in the mouse, to first demonstrate that β-catenin is dispensable for differentiation of liver precursor cells (hepatoblasts) to cholangiocyte precursors. Second, when β-catenin was depleted in the latter, maturation of cholangiocytes, bile duct morphogenesis and differentiation of periportal hepatocytes from cholangiocyte precursors was normal. In contrast, stabilization of β-catenin in cholangiocyte precursors perturbed duct development and cholangiocyte differentiation. We conclude that β-catenin is dispensable for biliary development but that its activity must be kept within tight limits. Our work is expected to significantly impact on in vitro differentiation of stem cells to cholangiocytes for toxicology studies and disease modeling.

Collaboration


Dive into the Sabine Cordi's collaboration.

Top Co-Authors

Avatar

Frédéric P. Lemaigre

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Christophe E. Pierreux

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Patrick Jacquemin

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Aline Antoniou

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Peggy Raynaud

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Younes Achouri

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Frédéric Clotman

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Pierre J. Courtoy

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodolphe Carpentier

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge