Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christy M. McCain is active.

Publication


Featured researches published by Christy M. McCain.


Journal of Mammalogy | 2007

Guidelines of the American Society of Mammalogists for the Use of Wild Mammals in Research

Robert S. Sikes; William L. Gannon; Darrin S. Carroll; Brent J. Danielson; Michael R. Gannon; David W. Hale; Christy M. McCain; Link E. Olson; Sarah Ressing; Robert M. Timm; Janet E. Whaley

Abstract General guidelines for use of wild mammal species are updated from the 1998 version approved by the American Society of Mammalogists (ASM) and expanded to include additional resources. Included are details on marking, housing, trapping, and collecting mammals. These guidelines cover current professional techniques and regulations involving mammals used in research. Institutional animal care and use committees, regulatory agencies, and investigators should review and approve procedures concerning use of vertebrates at any particular institution. These guidelines were prepared and approved by the ASM, whose collective expertise provides a broad and comprehensive understanding of the biology of nondomesticated mammals in their natural environments.


Ecology Letters | 2010

Niche conservatism as an emerging principle in ecology and conservation biology.

John J. Wiens; David D. Ackerly; Andrew P. Allen; Brian L. Anacker; Lauren B. Buckley; Howard V. Cornell; Ellen I. Damschen; T. Jonathan Davies; John-Arvid Grytnes; Susan Harrison; Bradford A. Hawkins; Robert D. Holt; Christy M. McCain; Patrick R. Stephens

The diversity of life is ultimately generated by evolution, and much attention has focused on the rapid evolution of ecological traits. Yet, the tendency for many ecological traits to instead remain similar over time [niche conservatism (NC)] has many consequences for the fundamental patterns and processes studied in ecology and conservation biology. Here, we describe the mounting evidence for the importance of NC to major topics in ecology (e.g. species richness, ecosystem function) and conservation (e.g. climate change, invasive species). We also review other areas where it may be important but has generally been overlooked, in both ecology (e.g. food webs, disease ecology, mutualistic interactions) and conservation (e.g. habitat modification). We summarize methods for testing for NC, and suggest that a commonly used and advocated method (involving a test for phylogenetic signal) is potentially problematic, and describe alternative approaches. We suggest that considering NC: (1) focuses attention on the within-species processes that cause traits to be conserved over time, (2) emphasizes connections between questions and research areas that are not obviously related (e.g. invasives, global warming, tropical richness), and (3) suggests new areas for research (e.g. why are some clades largely nocturnal? why do related species share diseases?).


Ecology | 2005

ELEVATIONAL GRADIENTS IN DIVERSITY OF SMALL MAMMALS

Christy M. McCain

A global analysis of elevational diversity trends for nonvolant small mammals revealed a clear pattern of mid-elevational peaks in species richness. Fifty-six data sets were used to test the predictions of a null model (the mid-domain effect) and climatic hypotheses. Very few data sets fit entirely within the predictions of the null model, and the average predictive power of the null model was low. Regional (gamma) diversity fit the null model better than did local (alpha) diversity. Diversity peaked at higher elevations on taller mountains, consistent with climatic factors producing elevationally correlated habitat bands (Massenerhebung effect). This positive, linear relationship was documented for all data sets but was particularly pronounced for alpha diversity. Gamma diversity, which is generally highly influenced by area, exhibited a trend of highest diversity shifting toward lower elevations, and higher elevational peaks in species diversity at higher latitudes. The elevation of temperate diversity peaks exhibited a negative association with latitude. These results are evidence for the importance of a suite of interacting climatic, area, and geometric factors on elevational diversity patterns, apparent in spite of noise associated with different sampling techniques, localities, and historical pressures.


Ecology | 2011

Microbes do not follow the elevational diversity patterns of plants and animals

Noah Fierer; Christy M. McCain; Patrick Meir; Michael Zimmermann; Joshua M. Rapp; Miles R. Silman; Rob Knight

The elevational gradient in plant and animal diversity is one of the most widely documented patterns in ecology and, although no consensus explanation exists, many hypotheses have been proposed over the past century to explain these patterns. Historically, research on elevational diversity gradients has focused almost exclusively on plant and animal taxa. As a result, we do not know whether microbes exhibit elevational gradients in diversity that parallel those observed for macroscopic taxa. This represents a key knowledge gap in ecology, especially given the ubiquity, abundance, and functional importance of microbes. Here we show that, across a montane elevational gradient in eastern Peru, bacteria living in three distinct habitats (organic soil, mineral soil, and leaf surfaces) exhibit no significant elevational gradient in diversity (r2<0.17, P>0.1 in all cases), in direct contrast to the significant diversity changes observed for plant and animal taxa across the same montane gradient (r2>0.75, P<0.001 in all cases). This finding suggests that the biogeographical patterns exhibited by bacteria are fundamentally different from those of plants and animals, highlighting the need for the development of more inclusive concepts and theories in biogeography to explain these disparities.


Proceedings of the Royal Society of London B: Biological Sciences | 2010

Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals

Lauren B. Buckley; T. Jonathan Davies; David D. Ackerly; Nathan J. B. Kraft; Susan P. Harrison; Brian L. Anacker; Howard V. Cornell; Ellen I. Damschen; John Avid Grytnes; Bradford A. Hawkins; Christy M. McCain; Patrick R. Stephens; John J. Wiens

Biologists have long searched for mechanisms responsible for the increase in species richness with decreasing latitude. The strong correlation between species richness and climate is frequently interpreted as reflecting a causal link via processes linked to energy or evolutionary rates. Here, we investigate how the aggregation of clades, as dictated by phylogeny, can give rise to significant climate–richness gradients without gradients in diversification or environmental carrying capacity. The relationship between climate and species richness varies considerably between clades, regions and time periods in a global-scale phylogenetically informed analysis of all terrestrial mammal species. Many young clades show negative richness–temperature slopes (more species at cooler temperatures), with the ages of these clades coinciding with the expansion of temperate climate zones in the late Eocene. In carnivores, we find steeply positive richness–temperature slopes in clades with restricted distributions and tropical origins (e.g. cat clade), whereas widespread, temperate clades exhibit shallow, negative slopes (e.g. dog–bear clade). We show that the slope of the global climate–richness gradient in mammals is driven by aggregating Chiroptera (bats) with their Eutherian sister group. Our findings indicate that the evolutionary history should be accounted for as part of any search for causal links between environment and species richness.


Science | 2010

The Evolution of Maximum Body Size of Terrestrial Mammals

Felisa A. Smith; Alison G. Boyer; James H. Brown; Daniel P. Costa; Tamar Dayan; S. K. Morgan Ernest; Alistair R. Evans; Mikael Fortelius; John L. Gittleman; Marcus J. Hamilton; Larisa E. Harding; Kari Lintulaakso; S. Kathleen Lyons; Christy M. McCain; Jordan G. Okie; Juha Saarinen; Richard M. Sibly; Patrick R. Stephens; Jessica M. Theodor; Mark D. Uhen

How Mammals Grew in Size Mammals diversified greatly after the end-Cretaceous extinction, which eliminated the dominant land animals (dinosaurs). Smith et al. (p. 1216) examined how the maximum size of mammals increased during their radiation in each continent. Overall, mammal size increased rapidly, then leveled off after about 25 million years. This pattern holds true on most of the continents—even though data are sparse for South America—and implies that mammals grew to fill available niches before other environmental and biological limits took hold. Maximum mammal size increased at the beginning of the Cenozoic, then leveled off after about 25 million years. The extinction of dinosaurs at the Cretaceous/Paleogene (K/Pg) boundary was the seminal event that opened the door for the subsequent diversification of terrestrial mammals. Our compilation of maximum body size at the ordinal level by sub-epoch shows a near-exponential increase after the K/Pg. On each continent, the maximum size of mammals leveled off after 40 million years ago and thereafter remained approximately constant. There was remarkable congruence in the rate, trajectory, and upper limit across continents, orders, and trophic guilds, despite differences in geological and climatic history, turnover of lineages, and ecological variation. Our analysis suggests that although the primary driver for the evolution of giant mammals was diversification to fill ecological niches, environmental temperature and land area may have ultimately constrained the maximum size achieved.


Ecology Letters | 2009

Vertebrate range sizes indicate that mountains may be ‘higher’ in the tropics

Christy M. McCain

In 1967, Daniel Janzen proposed the influential, but largely untested hypothesis, that tropical mountain passes are physiologically higher than temperate mountains. I test his key prediction, the one upon which all the others rely: namely, that elevational range sizes of organisms get larger on mountains at increasing latitudes. My analyses use 170 montane gradients spanning 36.5 degrees S to 48.2 degrees N latitude compiled from over 80 years of research and 16,500 species of rodents, bats, birds, lizards, snakes, salamanders, and frogs. In support of Janzens prediction, I find that elevational range size increases with increasing latitude for all vertebrate groups except rodents. I document additional lines of evidence for temperature variability as a plausible mechanism for trends in vertebrate range size, including strong effects of thermoregulation and daily temperature variability, and a weak effect of precipitation.


Ecology Letters | 2011

Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate

Christy M. McCain; Robert K. Colwell

Mountains are centres of global biodiversity, endemism and threatened species. Elevational gradients present opportunities for species currently living near their upper thermal limits to track cooler temperatures upslope in warming climates, but only if changes in precipitation are sufficiently in step with temperature. We model local population extirpation risk for a range of temperature and precipitation scenarios over the next 100 years for 16 848 vertebrate species populations distributed along 156 elevational gradients. Average population extirpation risks due to warming alone were < 5%, but increased 10-fold, on average, when changes in precipitation were also considered. Under the driest scenarios (minimum predicted precipitation), local extirpation risks increased sharply (50-60%) and were especially worrisome for hydrophilic amphibians and montane Latin America (c. 80%). Realistic assessment of risks urgently requires improved monitoring of precipitation, better regional precipitation models and more research on the effects of changes in precipitation on montane distributions.


Proceedings of the Royal Society of London Series B: Biological Sciences | 2012

Latitude, elevational climatic zonation and speciation in New World vertebrates

Carlos Daniel Cadena; Kenneth H. Kozak; Juan Pablo Gomez; Juan L. Parra; Christy M. McCain; Rauri C. K. Bowie; Ana Carolina Carnaval; Craig Moritz; Carsten Rahbek; Trina E. Roberts; Nathan J. Sanders; Christopher J. Schneider; Jeremy VanDerWal; Kelly R. Zamudio; Catherine H. Graham

Many biodiversity hotspots are located in montane regions, especially in the tropics. A possible explanation for this pattern is that the narrow thermal tolerances of tropical species and greater climatic stratification of tropical mountains create more opportunities for climate-associated parapatric or allopatric speciation in the tropics relative to the temperate zone. However, it is unclear whether a general relationship exists among latitude, climatic zonation and the ecology of speciation. Recent taxon-specific studies obtained different results regarding the role of climate in speciation in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate-zone species do not differ from one another, yet the temperature range experienced by species in the temperate zone is greater than for those in the tropics. Moreover, tropical sister species tend to exhibit greater similarity in their climatic distributions than temperate sister species. This pattern suggests that evolutionary conservatism in the thermal niches of tropical taxa, coupled with the greater thermal zonation of tropical mountains, may result in increased opportunities for allopatric isolation, speciation and the accumulation of species in tropical montane regions. Our study exemplifies the power of combining phylogenetic and spatial datasets of global climatic variation to explore evolutionary (rather than purely ecological) explanations for the high biodiversity of tropical montane regions.


Ecology | 2007

Area and mammalian elevational diversity.

Christy M. McCain

Elevational gradients hold enormous potential for understanding general properties of biodiversity. Like latitudinal gradients, the hypotheses for diversity patterns can be grouped into historical explanations, climatic drivers, and spatial hypotheses. The spatial hypotheses include the species-area effect and spatial constraint (mid-domain effect null models). I test these two spatial hypotheses using regional diversity patterns for mammals (non-volant small mammals and bats) along 34 elevational gradients spanning 24.4 degrees S-40.4 degrees N latitude. There was high variability in the fit to the species-area hypothesis and the mid-domain effect. Both hypotheses can be eliminated as primary drivers of elevational diversity. Area and spatial constraint both represent sources of error rather than mechanisms underlying these mammalian diversity patterns. Similar results are expected for other vertebrate taxa, plants, and invertebrates since they show comparable distributions of elevational diversity patterns to mammalian patterns.

Collaboration


Dive into the Christy M. McCain's collaboration.

Top Co-Authors

Avatar

Jan Beck

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen I. Damschen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. Wiens

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge