Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuan Xiao is active.

Publication


Featured researches published by Chuan Xiao.


Cell | 2006

Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN.

Elena Pokidysheva; Ying Zhang; Anthony J. Battisti; Carol M. Bator-Kelly; Paul R. Chipman; Chuan Xiao; Glenn Gregorio; Wayne A. Hendrickson; Richard J. Kuhn; Michael G. Rossmann

Dengue virus (DENV) is a significant human pathogen that causes millions of infections and results in about 24,000 deaths each year. Dendritic cell-specific ICAM3 grabbing nonintegrin (DC-SIGN), abundant in immature dendritic cells, was previously reported as being an ancillary receptor interacting with the surface of DENV. The structure of DENV in complex with the carbohydrate recognition domain (CRD) of DC-SIGN was determined by cryo-electron microscopy at 25 A resolution. One CRD monomer was found to bind to two glycosylation sites at Asn67 of two neighboring glycoproteins in each icosahedral asymmetric unit, leaving the third Asn67 residue vacant. The vacancy at the third Asn67 site is a result of the nonequivalence of the glycoprotein environments, leaving space for the primary receptor binding to domain III of E. The use of carbohydrate moieties for receptor binding sites suggests a mechanism for avoiding immune surveillance.


PLOS Biology | 2009

Structural Studies of the Giant Mimivirus

Chuan Xiao; Yurii G. Kuznetsov; Siyang Sun; Susan Hafenstein; Victor A. Kostyuchenko; Paul R. Chipman; Marie Suzan-Monti; Didier Raoult; Alexander McPherson; Michael G. Rossmann

Mimivirus is the largest known virus whose genome and physical size are comparable to some small bacteria, blurring the boundary between a virus and a cell. Structural studies of Mimivirus have been difficult because of its size and long surface fibers. Here we report the use of enzymatic digestions to remove the surface fibers of Mimivirus in order to expose the surface of the viral capsid. Cryo-electron microscopy (cryoEM) and atomic force microscopy were able to show that the 20 icosahedral faces of Mimivirus capsids have hexagonal arrays of depressions. Each depression is surrounded by six trimeric capsomers that are similar in structure to those in many other large, icosahedral double-stranded DNA viruses. Whereas in most viruses these capsomers are hexagonally close-packed with the same orientation in each face, in Mimivirus there are vacancies at the systematic depressions with neighboring capsomers differing in orientation by 60°. The previously observed starfish-shaped feature is well-resolved and found to be on each virus particle and is associated with a special pentameric vertex. The arms of the starfish fit into the gaps between the five faces surrounding the unique vertex, acting as a seal. Furthermore, the enveloped nucleocapsid is accurately positioned and oriented within the capsid with a concave surface facing the unique vertex. Thus, the starfish-shaped feature and the organization of the nucleocapsid might regulate the delivery of the genome to the host. The structure of Mimivirus, as well as the various fiber components observed in the virus, suggests that the Mimivirus genome includes genes derived from both eukaryotic and prokaryotic organisms. The three-dimensional cryoEM reconstruction reported here is of a virus with a volume that is one order of magnitude larger than any previously reported molecular assembly studied at a resolution of equal to or better than 65 Å.


PLOS Biology | 2008

Distinct DNA exit and packaging portals in the virus Acanthamoeba polyphaga mimivirus.

Nathan Zauberman; Yael Mutsafi; Daniel Ben Halevy; Eyal Shimoni; Eugenia Klein; Chuan Xiao; Siyang Sun; Abraham Minsky

Icosahedral double-stranded DNA viruses use a single portal for genome delivery and packaging. The extensive structural similarity revealed by such portals in diverse viruses, as well as their invariable positioning at a unique icosahedral vertex, led to the consensus that a particular, highly conserved vertex-portal architecture is essential for viral DNA translocations. Here we present an exception to this paradigm by demonstrating that genome delivery and packaging in the virus Acanthamoeba polyphaga mimivirus occur through two distinct portals. By using high-resolution techniques, including electron tomography and cryo-scanning electron microscopy, we show that Mimivirus genome delivery entails a large-scale conformational change of the capsid, whereby five icosahedral faces open up. This opening, which occurs at a unique vertex of the capsid that we coined the “stargate”, allows for the formation of a massive membrane conduit through which the viral DNA is released. A transient aperture centered at an icosahedral face distal to the DNA delivery site acts as a non-vertex DNA packaging portal. In conjunction with comparative genomic studies, our observations imply a viral packaging pathway akin to bacterial DNA segregation, which might be shared by diverse internal membrane–containing viruses.


Journal of Virology | 2001

Interaction of Coxsackievirus A21 with Its Cellular Receptor, ICAM-1

Chuan Xiao; Carol M. Bator; Valorie D. Bowman; Elizabeth Rieder; Yongning He; Benoı̂t Hébert; Jordi Bella; Timothy S. Baker; E Wimmer; Richard J. Kuhn; Michael G. Rossmann

ABSTRACT Coxsackievirus A21 (CAV21), like human rhinoviruses (HRVs), is a causative agent of the common cold. It uses the same cellular receptor, intercellular adhesion molecule 1 (ICAM-1), as does the major group of HRVs; unlike HRVs, however, it is stable at acid pH. The cryoelectron microscopy (cryoEM) image reconstruction of CAV21 is consistent with the highly homologous crystal structure of poliovirus 1; like other enteroviruses and HRVs, CAV21 has a canyon-like depression around each of the 12 fivefold vertices. A cryoEM reconstruction of CAV21 complexed with ICAM-1 shows all five domains of the extracellular component of ICAM-1. The known atomic structure of the ICAM-1 amino-terminal domains D1 and D2 has been fitted into the cryoEM density of the complex. The site of ICAM-1 binding within the canyon of CAV21 overlaps the site of receptor recognition utilized by rhinoviruses and polioviruses. Interactions within this common region may be essential for triggering viral destabilization after attachment to susceptible cells.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Asymmetric binding of transferrin receptor to parvovirus capsids

Susan Hafenstein; Laura M. Palermo; Victor A. Kostyuchenko; Chuan Xiao; Marc C. Morais; Christian D. S. Nelson; Valorie D. Bowman; Anthony J. Battisti; Paul R. Chipman; Colin R. Parrish; Michael G. Rossmann

Although many viruses are icosahedral when they initially bind to one or more receptor molecules on the cell surface, such an interaction is asymmetric, probably causing a breakdown in the symmetry and conformation of the original infecting virion in preparation for membrane penetration and release of the viral genome. Cryoelectron microscopy and biochemical analyses show that transferrin receptor, the cellular receptor for canine parvovirus, can bind to only one or a few of the 60 icosahedrally equivalent sites on the virion, indicating that either canine parvovirus has inherent asymmetry or binding of receptor induces asymmetry. The asymmetry of receptor binding to canine parvovirus is reminiscent of the special portal in tailed bacteriophages and some large, icosahedral viruses. Asymmetric interactions of icosahedral viruses with their hosts might be a more common phenomenon than previously thought and may have been obscured by averaging in previous crystallographic and electron microscopic structure determinations.


Proceedings of the National Academy of Sciences of the United States of America | 2009

An icosahedral algal virus has a complex unique vertex decorated by a spike

Mickaël V. Cherrier; Victor A. Kostyuchenko; Chuan Xiao; Valorie D. Bowman; Anthony J. Battisti; Xiaodong Yan; Paul R. Chipman; Timothy S. Baker; James L. Van Etten; Michael G. Rossmann

Paramecium bursaria Chlorella virus-1 is an icosahedrally shaped, 1,900-Å-diameter virus that infects unicellular eukaryotic green algae. A 5-fold symmetric, 3D reconstruction using cryoelectron microscopy images has now shown that the quasiicosahedral virus has a unique vertex, with a pocket on the inside and a spike structure on the outside of the capsid. The pocket might contain enzymes for use in the initial stages of infection. The unique vertex consists of virally coded proteins, some of which have been identified. Comparison of shape, size, and location of the spike with similar features in bacteriophages T4 and P22 suggests that the spike might be a cell-puncturing device. Similar asymmetric features may have been missed in previous analyses of many other viruses that had been assumed to be perfectly icosahedral.


Intervirology | 2010

The Three-Dimensional Structure of Mimivirus

Thomas Klose; Yurii G. Kuznetsov; Chuan Xiao; Siyang Sun; Alexander McPherson; Michael G. Rossmann

Mimivirus, the prototypic member of the new family of Mimiviridae, is the largest virus known to date. Progress has been made recently in determining the three-dimensional structure of the 0.75-µm diameter virion using cryo-electron microscopy and atomic force microscopy. These showed that the virus is composed of an outer layer of dense fibers surrounding an icosahedrally shaped capsid and an internal membrane sac enveloping the genomic material of the virus. Additionally, a unique starfish-like structure at one of the fivefold vertices, required by the virus for infecting its host, has been defined in more detail.


Journal of Virology | 2004

Discrimination among Rhinovirus Serotypes for a Variant ICAM-1 Receptor Molecule

Chuan Xiao; Tobias J. Tuthill; Carol M. Bator Kelly; Lisa J. Challinor; Paul R. Chipman; Richard A. Killington; David J. Rowlands; Alister Craig; Michael G. Rossmann

ABSTRACT Intercellular adhesion molecule 1 (ICAM-1) is the cellular receptor for the major group of human rhinovirus serotypes, including human rhinovirus 14 (HRV14) and HRV16. A naturally occurring variant of ICAM-1, ICAM-1Kilifi, has altered binding characteristics with respect to different HRV serotypes. HRV14 binds to ICAM-1 only transiently at physiological temperatures but forms a stable complex with ICAM-1Kilifi. Conversely, HRV16 forms a stable complex with ICAM-1 but does not bind to ICAM-1Kilifi. The three-dimensional structures of HRV14 and HRV16, complexed with ICAM-1, and the structure of HRV14, complexed with ICAM-1Kilifi, have been determined by cryoelectron microscopy (cryoEM) image reconstruction to a resolution of approximately 10 Å. Structures determined by X-ray crystallography of both viruses and of ICAM-1 were fitted into the cryoEM density maps. The interfaces between the viruses and receptors contain extensive ionic networks. However, the interactions between the viruses and ICAM-1Kilifi contain one less salt bridge than between the viruses and ICAM-1. As HRV16 has fewer overall interactions with ICAM-1 than HRV14, the absence of this charge interaction has a greater impact on the binding of ICAM-1Kilifi to HRV16 than to HRV14.


Acta Crystallographica Section D-biological Crystallography | 2007

From structure of the complex to understanding of the biology.

Michael G. Rossmann; Fumio Arisaka; Anthony J. Battisti; Valorie D. Bowman; Paul R. Chipman; Andrei Fokine; Susan Hafenstein; Shuji Kanamaru; Victor A. Kostyuchenko; Vadim V. Mesyanzhinov; Mikhail M. Shneider; Marc C. Morais; Petr G. Leiman; Laura M. Palermo; Colin R. Parrish; Chuan Xiao

The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy single-particle reconstructions. This paper concerns itself with the study of the macromolecular complexes that constitute viruses, using structural hybrid techniques.


Current Opinion in Virology | 2011

Structures of giant icosahedral eukaryotic dsDNA viruses

Chuan Xiao; Michael G. Rossmann

In the last twenty years, numerous giant, dsDNA, icosahedral viruses have been discovered and assigned to the nucleocytoplasmic large dsDNA virus (NCLDV) clade. The major capsid proteins of these viruses consist of two consecutive jelly-roll domains, assembled into trimers, with pseudo 6-fold symmetry. The capsomers are assembled into arrays that have either p6 (as in Paramecium bursaria Chlorella virus-1) or p3 symmetry (as in Mimivirus). Most of the NCLDV viruses have a membrane that separates the nucleocapsid from the external capsid.

Collaboration


Dive into the Chuan Xiao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gustavo A. Avila

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar

Susan Hafenstein

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge