Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valorie D. Bowman is active.

Publication


Featured researches published by Valorie D. Bowman.


Journal of Virology | 2010

Influence of pr-M Cleavage on the Heterogeneity of Extracellular Dengue Virus Particles

Jiraphan Junjhon; Thomas J. Edwards; Utaiwan Utaipat; Valorie D. Bowman; Heather A. Holdaway; Wei Zhang; Poonsook Keelapang; Chunya Puttikhunt; Rushika Perera; Paul R. Chipman; Watchara Kasinrerk; Prida Malasit; Richard J. Kuhn; Nopporn Sittisombut

ABSTRACT During dengue virus replication, an incomplete cleavage of the envelope glycoprotein prM, generates a mixture of mature (prM-less) and prM-containing, immature extracellular particles. In this study, sequential immunoprecipitation and cryoelectron microscopy revealed a third type of extracellular particles, the partially mature particles, as the major prM-containing particles in a dengue serotype 2 virus. Changes in the proportion of viral particles in the pr-M junction mutants exhibiting altered levels of prM cleavage suggest that the partially mature particles may represent an intermediate subpopulation in the virus maturation pathway. These findings are consistent with a model suggesting the progressive mode of prM cleavage.


Journal of Virology | 2004

Structure of adeno-associated virus serotype 5.

Robert W. Walters; Mavis Agbandje-McKenna; Valorie D. Bowman; Thomas O. Moninger; Norman H. Olson; Michael P. Seiler; John A. Chiorini; Timothy S. Baker; Joseph Zabner

ABSTRACT Adeno-associated virus serotype 5 (AAV5) requires sialic acid on host cells to bind and infect. Other parvoviruses, including Aleutian mink disease parvovirus (ADV), canine parvovirus (CPV), minute virus of mice, and bovine parvovirus, also bind sialic acid. Hence, structural homology may explain this functional homology. The amino acids required for CPV sialic acid binding map to a site at the icosahedral twofold axes of the capsid. In contrast to AAV5, AAV2 does not bind sialic acid, but rather binds heparan sulfate proteoglycans at its threefold axes of symmetry. To explore the structure-function relationships among parvoviruses with respect to cell receptor attachment, we determined the structure of AAV5 by cryo-electron microscopy (cryo-EM) and image reconstruction at a resolution of 16 Å. Surface features common to some parvoviruses, namely depressions encircling the fivefold axes and protrusions at or surrounding the threefold axes, are preserved in the AAV5 capsid. However, even though there were some similarities, a comparison of the AAV5 structure with those of ADV and CPV failed to reveal a feature which could account for the sialic acid binding phenotype common to all three viruses. In contrast, the overall surface topologies of AAV5 and AAV2 are similar. A pseudo-atomic model generated for AAV5 based on the crystal structure of AAV2 and constrained by the AAV5 cryo-EM envelope revealed differences only in surface loop regions. Surprisingly, the surface topologies of AAV5 and AAV2 are remarkably similar to that of ADV despite only exhibiting ∼20% identity in amino acid sequences. Thus, capsid surface features are shared among parvoviruses and may not be unique to their replication phenotypes, i.e., whether they require a helper or are autonomous. Furthermore, specific surface features alone do not explain the variability in carbohydrate requirements for host cell receptor interactions among parvoviruses.


Journal of Structural Biology | 2009

Heparin binding induces conformational changes in Adeno-associated virus serotype 2

Hazel C. Levy; Valorie D. Bowman; Lakshmanan Govindasamy; Robert McKenna; Kevin Nash; Kenneth H. Warrington; Weijun Chen; Nicholas Muzyczka; Xiaodong Yan; Timothy S. Baker; Mavis Agbandje-McKenna

Adeno-associated virus serotype 2 (AAV2) uses heparan sulfate proteoglycan as a cell surface-attachment receptor. In this study the structures of AAV2 alone and complexed with heparin were determined to approximately 18A resolution using cryo-electron microscopy and three-dimensional image reconstruction. A difference map showed positive density, modeled as heparin, close to the icosahedral twofold axes and between the protrusions that surround the threefold axes of the capsid. Regions of the model near the threefold place the receptor in close proximity to basic residues previously identified as part of the heparin binding site. The region of the model near the twofold axes identifies a second contact site, not previously characterized but which is also possibly configured by heparin binding. The difference map also revealed two significant conformational changes: (I) at the tops of the threefold protrusions, which have become flattened in the complex, and (II) at the fivefold axes where the top of the channel is widened possibly in response to movement of the HI loops in the capsid proteins. Ordered density in the interior of the capsid in the AAV2-heparin complex was interpreted as nucleic acid, consistent with the presence of non-viral DNA in the expressed capsids.


Journal of Virology | 2005

Structure of Adeno-Associated Virus Type 4

Eric Padron; Valorie D. Bowman; Nikola Kaludov; Lakshmanan Govindasamy; Hazel C. Levy; Phillip Nick; Robert McKenna; Nicholas Muzyczka; John A. Chiorini; Timothy S. Baker; Mavis Agbandje-McKenna

ABSTRACT Adeno-associated virus (AAV) is a member of the Parvoviridae, belonging to the Dependovirus genus. Currently, several distinct isolates of AAV are in development for use in human gene therapy applications due to their ability to transduce different target cells. The need to manipulate AAV capsids for specific tissue delivery has generated interest in understanding their capsid structures. The structure of AAV type 4 (AAV4), one of the most antigenically distinct serotypes, was determined to 13-Å resolution by cryo-electron microscopy and image reconstruction. A pseudoatomic model was built for the AAV4 capsid by use of a structure-based sequence alignment of its major capsid protein, VP3, with that of AAV2, to which AAV4 is 58% identical and constrained by its reconstructed density envelope. The model showed variations in the surface loops that may account for the differences in receptor binding and antigenicity between AAV2 and AAV4. The AAV4 capsid surface topology also shows an unpredicted structural similarity to that of Aleutian mink disease virus and human parvovirus B19, autonomous members of the genus, despite limited sequence homology.


Structure | 2008

Defining Molecular and Domain Boundaries in the Bacteriophage ϕ29 DNA Packaging Motor

Marc C. Morais; Jaya S. Koti; Valorie D. Bowman; Emilio Reyes-Aldrete; Dwight L. Anderson; Michael G. Rossmann

Cryo-electron microscopy (cryo-EM) studies of the bacteriophage phi29 DNA packaging motor have delineated the relative positions and molecular boundaries of the 12-fold symmetric head-tail connector, the 5-fold symmetric prohead RNA (pRNA), the ATPase that provides the energy for packaging, and the procapsid. Reconstructions, assuming 5-fold symmetry, were determined for proheads with 174-base, 120-base, and 71-base pRNA; proheads lacking pRNA; proheads with ATPase bound; and proheads in which the packaging motor was missing the connector. These structures are consistent with pRNA and ATPase forming a pentameric motor component around the unique vertex of proheads. They suggest an assembly pathway for the packaging motor and a mechanism for DNA translocation into empty proheads.


Journal of Virology | 2003

Complexes of Poliovirus Serotypes with Their Common Cellular Receptor, CD155

Yongning He; Steffen Mueller; Paul R. Chipman; Carol M. Bator; Xiaozhong Peng; Valorie D. Bowman; Suchetana Mukhopadhyay; Eckard Wimmer; Richard J. Kuhn; Michael G. Rossmann

ABSTRACT Structures of all three poliovirus (PV) serotypes (PV1, PV2, and PV3) complexed with their cellular receptor, PV receptor (PVR or CD155), were determined by cryoelectron microscopy. Both glycosylated and fully deglycosylated CD155 exhibited similar binding sites and orientations in the viral canyon for all three PV serotypes, showing that all three serotypes use a common mechanism for cell entry. Difference maps between the glycosylated and deglycosylated CD155 complexes determined the sites of the carbohydrate moieties that, in turn, helped to verify the position of the receptor relative to the viral surface. The proximity of the CD155 carbohydrate site at Asn105 to the viral surface in the receptor-virus complex suggests that it might interfere with receptor docking, an observation consistent with the properties of mutant CD155. The footprints of CD155 on PV surfaces indicate that the south rim of the canyon dominates the virus-receptor interactions and may correspond to the initial CD155 binding state of the receptor-mediated viral uncoating. In contrast, the interaction of CD155 with the north rim of the canyon, especially the region immediately outside the viral hydrophobic pocket that normally binds a cellular “pocket factor,” may be critical for the release of the pocket factor, decreasing the virus stability and hence initiating uncoating. The large area of the CD155 footprint on the PV surface, in comparison with other picornavirus-receptor interactions, could be a potential limitation on the viability of PV escape mutants from antibody neutralization. Many of these are likely to have lost their ability to bind CD155, resulting in there being only three PV serotypes.


Journal of Virology | 2001

Interaction of Coxsackievirus A21 with Its Cellular Receptor, ICAM-1

Chuan Xiao; Carol M. Bator; Valorie D. Bowman; Elizabeth Rieder; Yongning He; Benoı̂t Hébert; Jordi Bella; Timothy S. Baker; E Wimmer; Richard J. Kuhn; Michael G. Rossmann

ABSTRACT Coxsackievirus A21 (CAV21), like human rhinoviruses (HRVs), is a causative agent of the common cold. It uses the same cellular receptor, intercellular adhesion molecule 1 (ICAM-1), as does the major group of HRVs; unlike HRVs, however, it is stable at acid pH. The cryoelectron microscopy (cryoEM) image reconstruction of CAV21 is consistent with the highly homologous crystal structure of poliovirus 1; like other enteroviruses and HRVs, CAV21 has a canyon-like depression around each of the 12 fivefold vertices. A cryoEM reconstruction of CAV21 complexed with ICAM-1 shows all five domains of the extracellular component of ICAM-1. The known atomic structure of the ICAM-1 amino-terminal domains D1 and D2 has been fitted into the cryoEM density of the complex. The site of ICAM-1 binding within the canyon of CAV21 overlaps the site of receptor recognition utilized by rhinoviruses and polioviruses. Interactions within this common region may be essential for triggering viral destabilization after attachment to susceptible cells.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Crystal structure of CD155 and electron microscopic studies of its complexes with polioviruses.

Ping Zhang; Steffen Mueller; Marc C. Morais; Carol M. Bator; Valorie D. Bowman; Susan Hafenstein; Eckard Wimmer; Michael G. Rossmann

When poliovirus (PV) recognizes its receptor, CD155, the virus changes from a 160S to a 135S particle before releasing its genome into the cytoplasm. CD155 is a transmembrane protein with 3 Ig-like extracellular domains, D1–D3, where D1 is recognized by the virus. The crystal structure of D1D2 has been determined to 3.5-Å resolution and fitted into ≈8.5-Å resolution cryoelectron microscopy reconstructions of the virus–receptor complexes for the 3 PV serotypes. These structures show that, compared with human rhinoviruses, the virus–receptor interactions for PVs have a greater dependence on hydrophobic interactions, as might be required for a virus that can inhabit environments of different pH. The pocket factor was shown to remain in the virus during the first recognition stage. The present structures, when combined with earlier mutational investigations, show that in the subsequent entry stage the receptor moves further into the canyon when at a physiological temperature, thereby expelling the pocket factor and separating the viral subunits to form 135S particles. These results provide a detailed analysis of how a nonenveloped virus can enter its host cell.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Asymmetric binding of transferrin receptor to parvovirus capsids

Susan Hafenstein; Laura M. Palermo; Victor A. Kostyuchenko; Chuan Xiao; Marc C. Morais; Christian D. S. Nelson; Valorie D. Bowman; Anthony J. Battisti; Paul R. Chipman; Colin R. Parrish; Michael G. Rossmann

Although many viruses are icosahedral when they initially bind to one or more receptor molecules on the cell surface, such an interaction is asymmetric, probably causing a breakdown in the symmetry and conformation of the original infecting virion in preparation for membrane penetration and release of the viral genome. Cryoelectron microscopy and biochemical analyses show that transferrin receptor, the cellular receptor for canine parvovirus, can bind to only one or a few of the 60 icosahedrally equivalent sites on the virion, indicating that either canine parvovirus has inherent asymmetry or binding of receptor induces asymmetry. The asymmetry of receptor binding to canine parvovirus is reminiscent of the special portal in tailed bacteriophages and some large, icosahedral viruses. Asymmetric interactions of icosahedral viruses with their hosts might be a more common phenomenon than previously thought and may have been obscured by averaging in previous crystallographic and electron microscopic structure determinations.


Journal of Molecular Biology | 2008

Insight into DNA and Protein Transport in Double-stranded DNA Viruses: The Structure of Bacteriophage N4

Kyung H. Choi; Jennifer McPartland; Irene Kaganman; Valorie D. Bowman; Lucia B. Rothman-Denes; Michael G. Rossmann

Bacteriophage N4 encapsidates a 3500-aa-long DNA-dependent RNA polymerase (vRNAP), which is injected into the host along with the N4 genome upon infection. The three-dimensional structures of wild-type and mutant N4 viruses lacking gp17, gp50, or gp65 were determined by cryoelectron microscopy. The virion has an icosahedral capsid with T=9 quasi-symmetry that encapsidates well-organized double-stranded DNA and vRNAP. The tail, attached at a unique pentameric vertex of the head, consists of a neck, 12 appendages, and six ribbons that constitute a non-contractile sheath around a central tail tube. Comparison of wild-type and mutant virus structures in conjunction with bioinformatics established the identity and virion locations of the major capsid protein (gp56), a decorating protein (gp17), the vRNAP (gp50), the tail sheath (gp65), the appendages (gp66), and the portal protein (gp59). The N4 virion organization provides insight into its assembly and suggests a mechanism for genome and vRNAP transport strategies utilized by this unique system.

Collaboration


Dive into the Valorie D. Bowman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Hafenstein

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc C. Morais

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge