Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuncheng Gong is active.

Publication


Featured researches published by Chuncheng Gong.


ACS Nano | 2016

Chemistry and Structure of Graphene Oxide via Direct Imaging

Shreya H. Dave; Chuncheng Gong; Alex W. Robertson; Jamie H. Warner; Jeffrey C. Grossman

Graphene oxide (GO) and reduced GO (rGO) are the only variants of graphene that can be manufactured at the kilogram scale, and yet the widely accepted model for their structure has largely relied on indirect evidence. Notably, existing high-resolution transmission electron microscopy (HRTEM) studies of graphene oxide report long-range order of sp(2) lattice with isolated defect clusters. Here, we present HRTEM evidence of a different structural form of GO, where nanocrystalline regions of sp(2) lattice are surrounded by regions of disorder. The presence of contaminants that adsorb to the surface of the material at room temperature normally prevents direct observation of the intrinsic atomic structure of this defective GO. To overcome this, we use an in situ heating holder within an aberration-corrected TEM (AC-TEM) to study the atomic structure of this nanocrystalline graphene oxide from room temperature to 700 °C. As the temperature increases to above 500 °C, the adsorbates detach from the GO and the underlying atomic structure is imaged to be small 2-4 nm crystalline domains within a polycrystalline GO film. By combining spectroscopic evidence with the AC-TEM data, we support the dynamic interpretation of the structural evolution of graphene oxide.


ACS Nano | 2015

Atomic Structure of Graphene Subnanometer Pores

Alex W. Robertson; Gun-Do Lee; Kuang He; Chuncheng Gong; Qu Chen; Euijoon Yoon; Angus I. Kirkland; Jamie H. Warner

The atomic structure of subnanometer pores in graphene, of interest due to graphenes potential as a desalination and gas filtration membrane, is demonstrated by atomic resolution aberration corrected transmission electron microscopy. High temperatures of 500 °C and over are used to prevent self-healing of the pores, permitting the successful imaging of open pore geometries consisting of between -4 to -13 atoms, all exhibiting subnanometer diameters. Picometer resolution bond length measurements are used to confirm reconstruction of five-membered ring projections that often decorate the pore perimeter, knowledge which is used to explore the viability of completely self-passivated subnanometer pore structures; bonding configurations where the pore would not require external passivation by, for example, hydrogen to be chemically inert.


ACS Nano | 2015

Thermally Induced Dynamics of Dislocations in Graphene at Atomic Resolution

Chuncheng Gong; Alex W. Robertson; Kuang He; Gun-Do Lee; Euijoon Yoon; Christopher S. Allen; Angus I. Kirkland; Jamie H. Warner

Thermally induced dislocation movements are important in understanding the effects of high temperature annealing on modifying the crystal structure. We use an in situ heating holder in an aberration corrected transmission electron microscopy to study the movement of dislocations in suspended monolayer graphene up to 800 °C. Control of temperature enables the differentiation of electron beam induced effects and thermally driven processes. At room temperature, the dynamics of dislocation behavior is driven by the electron beam irradiation at 80 kV; however at higher temperatures, increased movement of the dislocation is observed and provides evidence for the influence of thermal energy to the system. An analysis of the dislocation movement shows both climb and glide processes, including new complex pathways for migration and large nanoscale rapid jumps between fixed positions in the lattice. The improved understanding of the high temperature dislocation movement provides insights into annealing processes in graphene and the behavior of defects with increased heat.


ACS Nano | 2015

Spatially Dependent Lattice Deformations for Dislocations at the Edges of Graphene

Chuncheng Gong; Kuang He; Alex W. Robertson; Euijoon Yoon; Gun-Do Lee; Jamie H. Warner

We show that dislocations located at the edge of graphene cause different lattice deformations to those located in the bulk lattice. When a dislocation is located near an edge, a decrease in the rippling and increase of the in-plane rotation occurs relative to the dislocations in the bulk. The increased in-plane rotation near the edge causes bond rotations at the edge of graphene to reduce the overall strain in the system. Dislocations were highly stable and remained fixed in their position even when located within a few lattice spacings from the edge of graphene. We study this behavior at the atomic level using aberration-corrected transmission electron microscopy. These results show detailed information about the behavior of dislocations in 2D materials and the strain properties that result.


ACS Nano | 2015

Atomic Level Distributed Strain within Graphene Divacancies from Bond Rotations

Qu Chen; Alex W. Robertson; Kuang He; Chuncheng Gong; Euijoon Yoon; Gun-Do Lee; Jamie H. Warner

Vacancy defects play an important role in influencing the properties of graphene, and understanding their detailed atomic structure is crucial for developing accurate models to predict their impact. Divacancies (DVs) are one of the most common defects in graphene and can take three different structural forms through various sequences of bond rotations to minimize the energy. Using aberration-corrected transmission electron microscopy with monochromation of the electron source, we resolve the position of C atoms in graphene and measure the C-C bond lengths within the three DVs, enabling a map of bond strain to be generated. We show that bond rotations reduce the maximum single bond strain reached within a DV and help distribute the strain over a larger number of bonds to minimize the peak magnitude.


ACS Nano | 2016

Elongated Silicon–Carbon Bonds at Graphene Edges

Qu Chen; Alex W. Robertson; Kuang He; Chuncheng Gong; Euijoon Yoon; Angus I. Kirkland; Gun-Do Lee; Jamie H. Warner

We study the bond lengths of silicon (Si) atoms attached to both armchair and zigzag edges using aberration corrected transmission electron microscopy with monochromation of the electron beam. An in situ heating holder is used to perform imaging of samples at 800 °C in order to reduce chemical etching effects that cause rapid structure changes of graphene edges at room temperature under the electron beam. We provide detailed bond length measurements for Si atoms both attached to edges and also as near edge substitutional dopants. Edge reconstruction is also involved with the addition of Si dopants. Si atoms bonded to the edge of graphene are compared to substitutional dopants in the bulk lattice and reveal reduced out-of-plane distortion and bond elongation. An extended linear array of Si atoms at the edge is found to be energy-favorable due to inter-Si interactions. These results provide detailed structural information about the Si-C bonds in graphene, which may have importance in future catalytic and electronic applications.


ACS Omega | 2017

Atomic Structure and Dynamics of Defects in 2D MoS2 Bilayers

Si Zhou; Shanshan Wang; Huashan Li; Wenshuo Xu; Chuncheng Gong; Jeffrey C. Grossman; Jamie H. Warner

We present a detailed atomic-level study of defects in bilayer MoS2 using aberration-corrected transmission electron microscopy at an 80 kV accelerating voltage. Sulfur vacancies are found in both the top and bottom layers in 2H- and 3R-stacked MoS2 bilayers. In 3R-stacked bilayers, sulfur vacancies can migrate between layers but more preferably reside in the (Mo–2S) column rather than the (2S) column, indicating more complex vacancy production and migration in the bilayer system. As the point vacancy number increases, aggregation into larger defect structures occurs, and this impacts the interlayer stacking. Competition between compression in one layer from the loss of S atoms and the van der Waals interlayer force causes much less structural deformations than those in the monolayer system. Sulfur vacancy lines neighboring in top and bottom layers introduce less strain compared to those staggered in the same layer. These results show how defect structures in multilayered two-dimensional materials differ from their monolayer form.


ACS Nano | 2016

In Situ High Temperature Atomic Level Studies of Large Closed Grain Boundary Loops in Graphene

Chuncheng Gong; Kuang He; Qu Chen; Alex W. Robertson; Jamie H. Warner

We use an in situ heating holder within an aberration corrected transmission electron microscope (AC-TEM) to study the structure and dynamics of large closed grain boundary (GB) loops in graphene at the atomic level. Temperatures up to 800 °C are used to accelerate dynamic evolution of the defect clusters, increasing bond rotation and atomic addition/loss. Our results show that the large closed GB loops relax under electron beam irradiation into several isolated dislocations far apart from each other. Line defects composed of several adjacent excess-atom clusters can be found during the reconfiguration process. Dislocation ejection from the closed GB loops are seen in real time and are shown to help the reduction in loop size. These results show detailed information about the stability and behavior of large GB loops in 2D materials that have importance in the high temperature processing of these materials.


Physical Review B | 2015

Measuring strain and rotation fields at the dislocation core in graphene

L. L. Bonilla; Ana Carpio; Chuncheng Gong; Jamie H. Warner

Strain fields, dislocations, and defects may be used to control electronic properties of graphene. By using advanced imaging techniques with high-resolution transmission electron microscopes, we have measured the strain and rotation fields about dislocations in monolayer graphene with single-atom sensitivity. These fields differ qualitatively from those given by conventional linear elasticity. However, atom positions calculated from two-dimensional (2D) discrete elasticity and three-dimensional discrete periodized Foppl-von K ¨ arm´ an equations (dpFvKEs) yield fields close to experiments when determined by geometric phase analysis. 2D theories produce symmetric fields whereas those from experiments exhibit asymmetries. Numerical solutions of dpFvKEs provide strain and rotation fields of dislocation dipoles and pairs that also exhibit asymmetries and, compared with experiments, may yield information on out-of-plane displacements of atoms. While discrete theories need to be solved numerically, analytical formulas for strains and rotation about dislocations can be obtained from 2D Mindlin’s hyperstress theory. These formulas are very useful for fitting experimental data and provide a template to ascertain the importance of nonlinear and nonplanar effects. Measuring the parameters of this theory, we find two characteristic lengths between three and four times the lattice spacings that control dilatation and rotation about a dislocation. At larger distances from the dislocation core, the elastic fields decay to those of conventional elasticity. Our results may be relevant for strain engineering in graphene and other 2D materials of current interest.


ACS Nano | 2016

In Situ Atomic Level Dynamics of Heterogeneous Nucleation and Growth of Graphene from Inorganic Nanoparticle Seeds

Chuncheng Gong; Kuang He; Gun-Do Lee; Qu Chen; Alex W. Robertson; Euijoon Yoon; Suklyun Hong; Jamie H. Warner

An in situ heating holder inside an aberration-corrected transmission electron microscope (AC-TEM) is used to investigate the real-time atomic level dynamics associated with heterogeneous nucleation and growth of graphene from Au nanoparticle seeds. Heating monolayer graphene to an elevated temperature of 800 °C removes the majority of amorphous carbon adsorbates and leaves a clean surface. The aggregation of Au impurity atoms into nanoparticle clusters that are bound to the surface of monolayer graphene causes nucleation of secondary graphene layers from carbon feedstock present within the microscope chamber. This enables the in situ study of heterogeneous nucleation and growth of graphene at the atomic level. We show that the growth mechanism consists of alternating C cluster attachment and indentation filling to maintain a uniform growth front of lowest energy. Back-folding of the graphene growth front is observed, followed by a process that involves flipping back and attaching to the surrounding region. We show how the highly polycrystalline graphene seed evolves with time into a higher order crystalline structure using a combination of AC-TEM and tight-binding molecular dynamics (TBMD) simulations. This helps understand the detailed lowest-energy step-by-step pathways associated with grain boundaries (GB) migration and crystallization processes. We find the motion of the GB is discontinuous and mediated by both bond rotation and atom evaporation, supported by density functional theory calculations and TBMD. These results provide insights into the formation of crystalline seed domains that are generated during bottom-up graphene synthesis.

Collaboration


Dive into the Chuncheng Gong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuang He

University of Oxford

View shared research outputs
Top Co-Authors

Avatar

Euijoon Yoon

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Gun-Do Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Qu Chen

University of Oxford

View shared research outputs
Top Co-Authors

Avatar

Jeffrey C. Grossman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge