Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cindy C. Larson is active.

Publication


Featured researches published by Cindy C. Larson.


Nanotechnology | 2010

Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays

Manas Ranjan Gartia; Zhida Xu; Elaine M. Behymer; Hoang Nguyen; Jerald A. Britten; Cindy C. Larson; Robin Miles; Mihail Bora; Allan S. P. Chang; Tiziana C. Bond; G. Logan Liu

Surface enhanced Raman spectroscopy (SERS) has been increasingly utilized as an analytical technique with significant chemical and biological applications (Qian et al 2008 Nat. Biotechnol. 26 83; Fujita et al 2009 J. Biomed. Opt. 14 024038; Chou et al 2008 Nano Lett.8 1729; Culha et al 2003 Anal. Chem. 75 6196; Willets K A 2009 Anal. Bioanal. Chem. 394 85; Han et al 2009 Anal. Bioanal. Chem. 394 1719; Sha et al 2008 J. Am. Chem. Soc. 130 17214). However, production of a robust, homogeneous and large-area SERS substrate with the same ultrahigh sensitivity and reproducibility still remains an important issue. Here, we describe a large-area ultrahigh-uniformity tapered silver nanopillar array made by laser interference lithography on the entire surface of a 6 inch wafer. Also presented is the rigorous optical characterization method of the tapered nanopillar substrate to accurately quantify the Raman enhancement factor, uniformity and repeatability. An average homogeneous enhancement factor of close to 10(8) was obtained for benzenethiol adsorbed on a silver-coated nanopillar substrate.


Optics Express | 2012

Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering

Xuan Yang; Nazar Ileri; Cindy C. Larson; Thomas C. Carlson; Jerald A. Britten; Allan S. P. Chang; Claire Gu; Tiziana C. Bond

A highly-sensitive optical fiber surface-enhanced Raman scattering (SERS) sensor has been developed by interference lithography. While one facet of the optical fiber is patterned with silver-coated nanopillar array as a SERS platform, the other end of the probe is used, in a remote end detection, to couple the excitation laser into the fiber and send the SERS signal to the spectrometer. SERS performance of the probe is characterized using trans-1,2-bis(4-pyridyl)-ethylene (BPE) monolayer and an enhancement factor of 1.2 × 10(7) can be achieved by focusing the laser directly onto the nanopillar array (front end detection). We also demonstrate that this probe can be used for in situ remote sensing of toluene vapor by the remote end detection. Such a fiber SERS probe shows great potential for molecular detection in various sensing applications.


Applied Physics Letters | 2013

Plasmonic black metals in resonant nanocavities

Mihail Bora; Elaine M. Behymer; Dietrich A. Dehlinger; Jerald A. Britten; Cindy C. Larson; Allan S. P. Chang; Keiko Munechika; Hoang T. Nguyen; Tiziana C. Bond

We investigate a plasmonic resonant structure tunable from ultra-violet to near infrared wavelengths with maximum absorbance strength over 95% due to a highly efficient coupling with incident light. Additional harmonics are excited at higher frequencies extending the absorbance range to multiple wavelengths. We propose the concept of a plasmonic black metal nanoresonator that exhibits broadband absorbance characteristics by spacing the modes closer through increasing the resonator length and by employing adiabatic plasmonic nano-focusing on the tapered end of the cavity.


Optics Letters | 2009

Precise diffraction efficiency measurements of large-area greater-than-99%-efficient dielectric gratings at the Littrow angle

P. Lu; Ke-Xun Sun; Robert L. Byer; Jerald A. Britten; Hoang T. Nguyen; James D. Nissen; Cindy C. Larson; Michael D. Aasen; Thomas C. Carlson; Curly R. Hoaglan

We have developed improved cavity-finesse methods for characterizing the diffraction efficiencies of large gratings at the Littrow angle. These methods include measuring cavity length with optical techniques, using a Michelson interferometer to calibrate piezoelectric transducer nonlinearities and angle-tuning procedures to confirm optimal alignment. We used these methods to characterize two 20 cm scale dielectric gratings. The values taken from across their surfaces collectively had means and standard deviations of micro=99.293% and sigma=0.164% and micro=99.084% and sigma=0.079%. The greatest efficiency observed at a single point on a grating was (99.577+/-0.002)%, which is also the most accurate measurement of the diffraction efficiency in the literature of which we are aware. These results prove that a high diffraction efficiency with low variation is achievable across large apertures for gratings.


22nd Annual BACUS Symposium on Photomask Technology | 2002

Evaluation of the Capability of a Multibeam Confocal Inspection System for Inspection of EUVL Mask Blanks

Alan R. Stivers; Ted Liang; Michael Penn; Barry Lieberman; Gilbert V. Shelden; James A. Folta; Cindy C. Larson; Paul B. Mirkarimi; Christopher C. Walton; Eric M. Gulliksong; Moonsuk Yi

Extreme ultraviolet (EUV) multilayer defects (phase defects) are a defect type unique to extreme ultraviolet lithography (EUVL) masks. A manufacturable inspection capability for these defects is key to the success of EUV lithography. Simulations of EUV scattering from multilayer defects suggest that defect printability is related to the phase error induced by the defect, which is in turn strongly coupled to the size of a multilayer surface protrusion or intrusion. We can adopt a strategy of measuring the multilayer surface to detect phase defects. During the past year a working group composed of members of Intel Corporation, Lawrence Berkeley and Lawrence Livermore National Laboratories, and International Sematech searched for a commercial tool for EUVL mask substrate and blank inspection. This working group established the tool requirements, methodologies for tool evaluation, collected data and recommended a supplier for further development with International Sematech. We collected data from several vendors and found that a multibeam confocal inspection (MCI) system had a capability significantly better than the tools used today. We will present our strategy, requirements, methodologies and results. We will discuss in detail our unique programmed substrate and multilayer defect masks used to support the tool selection, including their actinic characterization. We will present data that quantifies the inspection capability of the MCI system.


Proceedings of SPIE, the International Society for Optical Engineering | 2000

Extreme Ultraviolet Lithography - Reflective Mask Technology

Christopher C. Walton; Patrick A. Kearney; Paul B. Mirkarimi; J. Bowers; Charles Cerjan; Abbie L. Warrick; Karl Wilhelmsen; Eric R. Fought; Craig E. Moore; Cindy C. Larson; Sherry L. Baker; Scott C. Burkhart; Scott Daniel Hector

EUVL mask blanks consist of a distributed Bragg reflector made of 6.7 nm-pitch bi-layers of Mo and Si deposited upon a precision Si or glass substrate. The layer deposition process has been optimized for low defects, by application of a vendor-supplied but highly modified ion-beam sputter deposition system. This system is fully automated using SMIF technology to obtain the lowest possible environmental- and handling-added defect levels. Originally designed to coat 150 mm substrates, it was upgraded in July 1999 to 200 mm and has coated runs of over 50 substrates at a time with median added defects > 100 nm below 0.05/cm2. These improvements have resulted from a number of ion-beam sputter deposition system modifications, upgrades, and operational changes, which will be discussed. Success in defect reduction is highly dependent upon defect detection, characterization, and cross- platform positional registration. We have made significant progress in adapting and extending commercial tools to this purpose, and have identified the surface scanner detection limits for different defect classes, and the signatures of false counts and non-printable scattering anomalies on the mask blank. We will present key results and how they have helped reduce added defects. The physics of defect reduction and mitigation is being investigated by a program on multilayer growth over deliberately placed perturbations (defects) of varying size. This program includes modeling of multilayer growth and modeling of defect printability. We developed a technique for depositing uniformly sized gold spheres on EUVL substrates, and have studied the suppression of the perturbations during multilayer growth under varying conditions. This work is key to determining the lower limit of critical defect size for EUV Lithography. We present key aspects of this work. We will summarize progress in all aspects of EUVL mask blank development, and present detailed results on defect reduction and mask blank performance at EUV wavelengths.


Society of Photo-Optical Instrumentation Engineers 18th Annual BACUS Symposium on Photomask Technology and Management, Redwood City, CA, September 16-18, 1998 | 1998

Masks for extreme ultraviolet lithography

Stephen P. Vernon; Patrick A. Kearney; William M. Tong; Shon Prisbrey; Cindy C. Larson; Craig E. Moore; Frank J. Weber; Gregory Frank Cardinale; Pei-Yang Yan; Scott Daniel Hector

In extreme ultraviolet lithography (EUVL), the technology specific requirements on the mask are a direct consequence of the utilization of radiation in the spectral region between 10 and 15 nm. At these wavelengths, all condensed materials are highly absorbing and efficient radiation transport mandates the use of all-reflective optical systems. Reflectivity is achieved with resonant, wavelength-matched multilayer (ML) coatings on all of the optical surfaces -- including the mask. The EUV mask has a unique architecture -- it consists of a substrate with a highly reflective ML coating (the mask blank) that is subsequently over-coated with a patterned absorber layer (the mask). Particulate contamination on the EUVL mask surface, errors in absorber definition and defects in the ML coating all have the potential to print in the lithographic process. While highly developed technologies exist for repair of the absorber layer, no viable strategy for the repair of ML coating defects has been identified. In this paper the state- of-the-art in ML deposition technology, optical inspection of EUVL mask blank defects and candidate absorber patterning approaches are reviewed.


SPIE's 27th Annual International Symposium on Microlithography | 2002

Advances in low-defect multilayers for EUVL mask blanks

James A. Folta; J. Courtney Davidson; Cindy C. Larson; Christopher C. Walton; Patrick A. Kearney

Low-defect multilayer coatings are required to fabricate mask blanks for Extreme Ultraviolet Lithography (EUVL). The mask blanks consist of high reflectance EUV multilayers on low thermal expansion substrates. A defect density of 0.0025 printable defects/cm2 for both the mask substrate and the multilayer is required to provide a mask blank yield of 60 percent. Current low defect multilayer coating technology allows repeated coating-added defect levels of 0.05/cm2 for defects greater than 90 nm polystyrene latex sphere (PSL) equivalent size for lots of 20 substrates. Extended clean operation of the coating system at levels below 0.08/cm2 for 3 months of operation has also been achieved. Two substrates with zero added defects in the quality area have been fabricated, providing an existence proof that ultra low defect coatings are possible. Increasing the ion source-to-target distance from 410 to 560 mm to reduce undesired coating of the ion source caused the defect density to increase to 0.2/cm2. Deposition and etching diagnostic witness substrates and deposition pinhole cameras showed a much higher level of ion beam spillover (ions missing the sputter target) than expected. Future work will quantify beam spillover, and test designs to reduce spillover, if it is confirmed to be the cause of the increased defect level. The LDD system will also be upgraded to allow clean coating of standard format mask substrates. The upgrade will confirm that the low defect process developed on Si wafers is compatible with the standard mask format 152 mm square substrates, and will provide a clean supply of EUVL mask blanks needed to support development of EUVL mask patterning processes and clean mask handling technologies.


Proceedings of SPIE | 2011

Nanopillars array for surface enhanced Raman scattering

Allan S. P. Chang; Mihail Bora; Hoang T. Nguyen; Elaine M. Behymer; Cindy C. Larson; Jerald A. Britten; J. Chance Carter; Tiziana C. Bond

We present a new class of surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. Two types of nanopillars within this class are discussed: vertical pillars and tapered pillars. For the vertical pillars, the gap between each pair of nanopillars is small enough (< 50 nm) such that highly confined plasmonic cavity resonances are supported between the pillars when light is incident upon them, and the anti-nodes of these resonances act as three-dimensional hotspots for SERS. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of 1,2 bis-(4-pyridyl)-ethylene (BPE), benzenethiol (BT) monolayer and toluene vapor. The results show that SERS enhancement factor of over 0.5 x 109 can be achieved, and BPE can be detected down to femto-molar concentration level. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors such as volatile organic compounds.


Laser Damage Symposium XLII: Annual Symposium on Optical Materials for High Power Lasers | 2010

Improvement of laser damage resistance and diffraction efficiency of multilayer dielectric diffraction gratings by HF etchback linewidth tailoring

Hoang T. Nguyen; Cindy C. Larson; Jerald A. Britten

Multilayer dielectric (MLD) diffraction gratings for Petawatt-class laser systems possess unique laser damage characteristics. Details of the shape of the grating lines and the concentration of absorbing impurities on the surface of the grating structures both have strong effects on laser damage threshold. It is known that electric field enhancement in the solid material comprising the grating lines varies directly with the linewidth and inversely with the line height for equivalent diffraction efficiency. Here, we present an overview of laser damage characteristics of MLD gratings, and describe a process for post-processing ion-beam etched grating lines using very dilute buffered hydrofluoric acid solutions. This process acts simultaneously to reduce grating linewidth and remove surface contaminants, thereby improving laser damage thresholds through two pathways.

Collaboration


Dive into the Cindy C. Larson's collaboration.

Top Co-Authors

Avatar

Jerald A. Britten

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christopher C. Walton

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tiziana C. Bond

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Allan S. P. Chang

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Hoang T. Nguyen

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nazar Ileri

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Patrick A. Kearney

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Paul B. Mirkarimi

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

James A. Folta

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Bokor

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge