Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire Hidalgo-Curtis is active.

Publication


Featured researches published by Claire Hidalgo-Curtis.


Nature Genetics | 2010

Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders

Thomas Ernst; Andrew Chase; Joannah Score; Claire Hidalgo-Curtis; Catherine Bryant; Amy V. Jones; Katherine Waghorn; Katerina Zoi; Fiona M. Ross; Andreas Reiter; Andreas Hochhaus; Hans G. Drexler; Andrew S Duncombe; Francisco Cervantes; David Oscier; Jacqueline Boultwood; Francis H. Grand; Nicholas C.P. Cross

Abnormalities of chromosome 7q are common in myeloid malignancies, but no specific target genes have yet been identified. Here, we describe the finding of homozygous EZH2 mutations in 9 of 12 individuals with 7q acquired uniparental disomy. Screening of a total of 614 individuals with myeloid disorders revealed 49 monoallelic or biallelic EZH2 mutations in 42 individuals; the mutations were found most commonly in those with myelodysplastic/myeloproliferative neoplasms (27 out of 219 individuals, or 12%) and in those with myelofibrosis (4 out of 30 individuals, or 13%). EZH2 encodes the catalytic subunit of the polycomb repressive complex 2 (PRC2), a highly conserved histone H3 lysine 27 (H3K27) methyltransferase that influences stem cell renewal by epigenetic repression of genes involved in cell fate decisions. EZH2 has oncogenic activity, and its overexpression has previously been causally linked to differentiation blocks in epithelial tumors. Notably, the mutations we identified resulted in premature chain termination or direct abrogation of histone methyltransferase activity, suggesting that EZH2 acts as a tumor suppressor for myeloid malignancies.


Blood | 2009

Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms

Francis H. Grand; Claire Hidalgo-Curtis; Thomas Ernst; Katerina Zoi; Christine Zoi; Carolann McGuire; Sebastian Kreil; Amy V. Jones; Joannah Score; Georgia Metzgeroth; David Oscier; Andrew G. Hall; Christian Brandts; Hubert Serve; Andreas Reiter; Andrew Chase; Nicholas C.P. Cross

Recent evidence has demonstrated that acquired uniparental disomy (aUPD) is a novel mechanism by which pathogenetic mutations in cancer may be reduced to homozygosity. To help identify novel mutations in myeloproliferative neoplasms (MPNs), we performed a genome-wide single nucleotide polymorphism (SNP) screen to identify aUPD in 58 patients with atypical chronic myeloid leukemia (aCML; n = 30), JAK2 mutation-negative myelofibrosis (MF; n = 18), or JAK2 mutation-negative polycythemia vera (PV; n = 10). Stretches of homozygous, copy neutral SNP calls greater than 20Mb were seen in 10 (33%) aCML and 1 (6%) MF, but were absent in PV. In total, 7 different chromosomes were involved with 7q and 11q each affected in 10% of aCML cases. CBL mutations were identified in all 3 cases with 11q aUPD and analysis of 574 additional MPNs revealed a total of 27 CBL variants in 26 patients with aCML, myelofibrosis or chronic myelomonocytic leukemia. Most variants were missense substitutions in the RING or linker domains that abrogated CBL ubiquitin ligase activity and conferred a proliferative advantage to 32D cells overexpressing FLT3. We conclude that acquired, transforming CBL mutations are a novel and widespread pathogenetic abnormality in morphologically related, clinically aggressive MPNs.


Blood | 2011

EZH2 mutational status predicts poor survival in myelofibrosis.

Paola Guglielmelli; Flavia Biamonte; Joannah Score; Claire Hidalgo-Curtis; Francisco Cervantes; Margherita Maffioli; Tiziana Fanelli; Thomas Ernst; Nils Winkelman; Amy V. Jones; Katerina Zoi; Andreas Reiter; Andrew S Duncombe; Laura Villani; Alberto Bosi; Giovanni Barosi; Nicholas C.P. Cross; Alessandro M. Vannucchi

We genotyped 370 subjects with primary myelofibrosis (PMF) and 148 with postpolycythemia vera/postessential thrombocythemia (PPV/PET) MF for mutations of EZH2. Mutational status at diagnosis was correlated with hematologic parameters, clinical manifestations, and outcome. A total of 25 different EZH2 mutations were detected in 5.9% of PMF, 1.2% of PPV-MF, and 9.4% of PET-MF patients; most were exonic heterozygous missense changes. EZH2 mutation coexisted with JAK2V617F or ASXL1 mutation in 12 of 29 (41.4%) and 6 of 27 (22.2%) evaluated patients; TET2 and CBL mutations were found in 2 and 1 patients, respectively. EZH2-mutated PMF patients had significantly higher leukocyte counts, blast-cell counts, and larger spleens at diagnosis, and most of them (52.6%) were in the high-risk International Prognostic Score System (IPSS) category. After a median follow-up of 39 months, 128 patients (25.9%) died, 81 (63.3%) because of leukemia. Leukemia-free survival (LFS) and overall survival (OS) were significantly reduced in EZH2-mutated PMF patients (P = .028 and P < .001, respectively); no such impact was seen for PPV/PET-MF patients, possibly due to the low number of mutated cases. In multivariate analysis, survival of PMF patients was predicted by IPSS high-risk category, a < 25% JAK2V617F allele burden, and EZH2 mutation status. We conclude that EZH2 mutations are independently associated with shorter survival in patients with PMF.


Blood | 2012

Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes

Olivier Kosmider; Véronique Gelsi-Boyer; Aline Renneville; Nadine Carbuccia; Claire Hidalgo-Curtis; Véronique Della Valle; Lucile Couronné; Laurianne Scourzic; Virginie Chesnais; Agnès Guerci-Bresler; Bohrane Slama; Odile Beyne-Rauzy; Aline Schmidt-Tanguy; Aspasia Stamatoullas-Bastard; Francois Dreyfus; Thomas Prebet; Stéphane de Botton; Norbert Vey; Michael A. Morgan; Nicholas C.P. Cross; Claude Preudhomme; Daniel Birnbaum; Olivier Bernard; Michaela Fontenay

A cohort of MDS patients was examined for mutations affecting 4 splice genes (SF3B1, SRSF2, ZRSR2, and U2AF35) and evaluated in the context of clinical and molecular markers. Splice gene mutations were detected in 95 of 221 patients. These mutations were mutually exclusive and less likely to occur in patients with complex cytogenetics or TP53 mutations. SF3B1(mut) patients presented with lower hemoglobin levels, increased WBC and platelet counts, and were more likely to have DNMT3A mutations. SRSF2(mut) patients clustered in RAEB-1 and RAEB-2 subtypes and exhibited pronounced thrombocytopenias. ZRSR2(mut) patients clustered in International Prognostic Scoring System intermediate-1 and intermediate-2 risk groups, had higher percentages of bone marrow blasts, and more often displayed isolated neutropenias. SRSF2 and ZRSR2 mutations were more common in TET2(mut) patients. U2AF35(mut) patients had an increased prevalence of chromosome 20 deletions and ASXL1 mutations. Multivariate analysis revealed an inferior overall survival and a higher AML transformation rate for the genotype ZRSR2(mut)/TET2(wt) (overall survival: hazard ratio = 3.3; 95% CI, 1.4-7.7; P = .006; AML transformation: hazard ratio = 3.6; 95% CI, 2-4.2; P = .026). Our results demonstrate that splice gene mutations are among the most frequent molecular aberrations in myelodysplastic syndrome, define distinct clinical phenotypes, and show preferential associations with mutations targeting transcriptional regulation.


Blood | 2012

Inactivation of polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/myeloproliferative neoplasms

Joannah Score; Claire Hidalgo-Curtis; Amy V. Jones; Nils Winkelmann; Alison C. Skinner; Daniel Ward; Katerina Zoi; Thomas Ernst; Frank Stegelmann; Konstanze Döhner; Andrew Chase; Nicholas C.P. Cross

The polycomb repressive complex 2 (PRC2) is a highly conserved histone H3 lysine 27 methyltransferase that regulates the expression of developmental genes. Inactivating mutations of the catalytic component of PRC2, EZH2, are seen in myeloid disorders. We reasoned that the other 2 core PRC2 components, SUZ12 and EED, may also be mutational targets in these diseases, as well as associated factors such as JARID2. SUZ12 mutations were identified in 1 of 2 patients with myelodysplastic syndrome/myeloproliferative neoplasms with 17q acquired uniparental disomy and in 2 of 2 myelofibrosis cases with focal 17q11 deletions. All 3 were missense mutations affecting the highly conserved VEFS domain. Analysis of a further 146 myelodysplastic syndrome/myeloproliferative neoplasm patients revealed an additional VEFS domain mutant, yielding a total mutation frequency of 1.4% (2 of 148). We did not find mutations of JARID2 or EED in association with acquired uniparental disomy for chromosome 6p or 11q, respectively; however, screening unselected cases identified missense mutations in EED (1 of 148; 1%) and JARID2 (3 of 148; 2%). All 3 SUZ12 mutations tested and the EED mutation reduced PRC2 histone methyltransferase activity in vitro, demonstrating that PRC2 function may be compromised in myeloid disorders by mutation of distinct genes.


Genes, Chromosomes and Cancer | 2008

The t(1;9)(p34;q34) and t(8;12)(p11;q15) fuse pre-mRNA processing proteins SFPQ (PSF) and CPSF6 to ABL and FGFR1

Claire Hidalgo-Curtis; Andrew Chase; Milton Drachenberg; Mark W. Roberts; Jerry Z. Finkelstein; David Oscier; Nicholas C.P. Cross; Francis H. Grand

We have investigated two patients with acquired chromosomal rearrangements, a male presenting with a t(1;9)(p34;q34) and B cell progenitor acute lymphoid leukemia and a female presenting with a t(8;12)(p11;q15) and the 8p11 myeloproliferative syndrome. We determined that the t(1;9) fused ABL to SFPQ (also known as PSF), a gene mapping to 1p34 that encodes a polypyrimidine tract‐binding protein‐associated splicing factor. The t(8;12) fused CPSF6, a cleavage and polyadenylation specificity factor, to FGFR1. The fusions were confirmed by amplification of the genomic breakpoints and RT‐PCR. The predicted oncogenic products of these fusions, SFPQ‐ABL and CPSF6‐FGFR1, are in‐frame and encode the N‐terminal domain of the partner protein and the entire tyrosine kinase domain and C‐terminal sequences of ABL and FGFR1. SFPQ interacts with two FGFR1 fusion partners, ZNF198 and CPSF6, that are functionally related to the recurrent PDGFRα partner FIP1L1. Our findings thus identify a group of proteins that are important for pre‐mRNA processing as fusion partners for tyrosine kinases in hematological malignancies.


Haematologica | 2010

Transcription factor mutations in myelodysplastic/myeloproliferative neoplasms

Thomas Ernst; Andrew Chase; Katerina Zoi; Katherine Waghorn; Claire Hidalgo-Curtis; Joannah Score; Amy V. Jones; Francis H. Grand; Andreas Reiter; Andreas Hochhaus; Nicholas C.P. Cross

Background Aberrant activation of tyrosine kinases, caused by either mutation or gene fusion, is of major importance for the development of many hematologic malignancies, particularly myeloproliferative neoplasms. We hypothesized that hitherto unrecognized, cytogenetically cryptic tyrosine kinase fusions may be common in non-classical or atypical myeloproliferative neoplasms and related myelodysplastic/myeloproliferative neoplasms. Design and Methods To detect genomic copy number changes associated with such fusions, we performed a systematic search in 68 patients using custom designed, targeted, high-resolution array comparative genomic hybridization. Arrays contained 44,000 oligonucleotide probes that targeted 500 genes including all 90 tyrosine kinases plus downstream tyrosine kinase signaling components, other translocation targets, transcription factors, and other factors known to be important for myelopoiesis. Results No abnormalities involving tyrosine kinases were detected; however, nine cytogenetically cryptic copy number imbalances were detected in seven patients, including hemizygous deletions of RUNX1 or CEBPA in two cases with atypical chronic myeloid leukemia. Mutation analysis of the remaining alleles revealed non-mutated RUNX1 and a frameshift insertion within CEBPA. A further mutation screen of 187 patients with myelodysplastic/myeloproliferative neoplasms identified RUNX1 mutations in 27 (14%) and CEBPA mutations in seven (4%) patients. Analysis of other transcription factors known to be frequently mutated in acute myeloid leukemia revealed NPM1 mutations in six (3%) and WT1 mutations in two (1%) patients with myelodysplastic/myeloproliferative neoplasms. Univariate analysis indicated that patients with mutations had a shorter overall survival (28 versus 44 months, P=0.019) compared with patients without mutations, with the prognosis for cases with CEBPA, NPM1 or WT1 mutations being particularly poor. Conclusions We conclude that mutations of transcription and other nuclear factors are frequent in myelodysplastic/myeloproliferative neoplasms and are generally mutually exclusive. CEBPA, NPM1 or WT1 mutations may be associated with a poor prognosis, an observation that will need to be confirmed by detailed prospective studies.


Leukemia | 2010

Analysis of genomic breakpoints in p190 and p210 BCR-ABL indicate distinct mechanisms of formation.

Joannah Score; María José Calasanz; O Ottman; Fabrizio Pane; R F Yeh; Manuel Sobrinho-Simões; Sebastian Kreil; D Ward; Claire Hidalgo-Curtis; Junia V. Melo; Joseph L. Wiemels; B Nadel; Nicholas C.P. Cross; Francis H. Grand

We sought to understand the genesis of the t(9;22) by characterizing genomic breakpoints in chronic myeloid leukemia (CML) and BCR–ABL-positive acute lymphoblastic leukemia (ALL). BCR–ABL breakpoints were identified in p190 ALL (n=25), p210 ALL (n=25) and p210 CML (n=32); reciprocal breakpoints were identified in 54 cases. No evidence for significant clustering and no association with sequence motifs was found except for a breakpoint deficit in repeat regions within BCR for p210 cases. Comparison of reciprocal breakpoints, however, showed differences in the patterns of deletion/insertions between p190 and p210. To explore the possibility that recombinase-activating gene (RAG) activity might be involved in ALL, we performed extra-chromosomal recombination assays for cases with breakpoints close to potential cryptic recombination signal sequence (cRSS) sites. Of 13 ALL cases tested, 1/10 with p190 and 1/3 with p210 precisely recapitulated the forward BCR–ABL breakpoint and 1/10 with p190 precisely recapitulated the reciprocal breakpoint. In contrast, neither of the p210 CMLs tested showed functional cRSSs. Thus, although the t(9;22) does not arise from aberrant variable (V), joining (J) and diversity (D) (V(D)J) recombination, our data suggest that in a subset of ALL cases RAG might create one of the initiating double-strand breaks.


British Journal of Haematology | 2011

Identification of FOXP1 and SNX2 as novel ABL1 fusion partners in acute lymphoblastic leukaemia

Thomas Ernst; Joannah Score; Michael W. Deininger; Claire Hidalgo-Curtis; Peter M. Lackie; William B. Ershler; John M. Goldman; Nicholas C.P. Cross; Francis H. Grand

We have identified two novel ABL1 fusion genes in two patients with B‐cell acute lymphoblastic leukaemia (ALL) associated with a t(3;9)(p12;q34) and a t(5;9)(q23;q34), respectively. Molecular analysis revealed a FOXP1‐ABL1 fusion for the t(3;9) and a SNX2‐ABL1 fusion for the t(5;9). The fusions were confirmed by specific amplification of the genomic breakpoints using reverse transcription polymerase chain reaction. The identification of ALL with rare ABL1 fusion partners is important because the leukaemia may respond to tyrosine kinase inhibitors in the same way as ALL patients with a classical BCR‐ABL1 fusion gene.


Leukemia | 2009

Detection and molecular monitoring of FIP1L1-PDGFRA-positive disease by analysis of patient-specific genomic DNA fusion junctions

Joannah Score; Christoph Walz; Jelena V. Jovanovic; Amy V. Jones; Katherine Waghorn; Claire Hidalgo-Curtis; F. Lin; David Grimwade; Francis H. Grand; Andreas Reiter; Nicholas C.P. Cross

To evaluate current detection methods for FIP1L1-PDGFRA in hypereosinophilic syndrome (HES), we developed a means to rapidly amplify genomic break points. We screened 202 cases and detected genomic junctions in all samples previously identified as RT-PCR positive (n=43). Genomic fusions were amplified by single step PCR in all cases whereas only 22 (51%) were single step RT-PCR positive. Importantly, FIP1L1-PDGFRA was detected in two cases that initially tested negative by RT-PCR or fluorescence in situ hybridization. Absolute quantitation of the fusion by real-time PCR from genomic DNA (gDNA) using patient-specific primer/probe combinations at presentation (n=13) revealed a 40-fold variation between patients (range, 0.027–1.1 FIP1L1-PDGFRA copies/haploid genome). In follow up samples, quantitative analysis of gDNA gave 1–2 log greater sensitivity than RQ-PCR of cDNA. Minimal residual disease assessment using gDNA showed that 11 of 13 patients achieved complete molecular response to imatinib within a median of 9 months (range, 3–17) of starting treatment, with a sensitivity of detection of up to 1 in 105. One case relapsed with an acquired D842V mutation. We conclude that detection of FIP1L1-PDGFRA from gDNA is a useful adjunct to standard diagnostic procedures and enables more sensitive follow up of positive cases after treatment.

Collaboration


Dive into the Claire Hidalgo-Curtis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joannah Score

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Amy V. Jones

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Thomas Ernst

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Andrew Chase

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew S Duncombe

University Hospital Southampton NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge