Colin Sharpe
University of Portsmouth
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Colin Sharpe.
PLOS ONE | 2011
Salaheddin M. Mahmud; Eduardo L. Franco; Donna Turner; Robert W. Platt; Patricia Beck; David Skarsgard; Jon Tonita; Colin Sharpe; Armen Aprikian
Background Despite strong laboratory evidence that non-steroidal anti-inflammatory drugs (NSAIDs) could prevent prostate cancer, epidemiological studies have so far reported conflicting results. Most studies were limited by lack of information on dosage and duration of use of the different classes of NSAIDs. Methods We conducted a nested case-control study using data from Saskatchewan Prescription Drug Plan (SPDP) and Cancer Registry to examine the effects of dose and duration of use of five classes of NSAIDs on prostate cancer risk. Cases (N = 9,007) were men aged ≥40 years diagnosed with prostatic carcinoma between 1985 and 2000, and were matched to four controls on age and duration of SPDP membership. Detailed histories of exposure to prescription NSAIDs and other drugs were obtained from the SPDP. Results Any use of propionates (e.g., ibuprofen, naproxen) was associated with a modest reduction in prostate cancer risk (Odds ratio = 0.90; 95%CI 0.84-0.95), whereas use of other NSAIDs was not. In particular, we did not observe the hypothesized inverse association with aspirin use (1.01; 0.95–1.07). There was no clear evidence of dose-response or duration-response relationships for any of the examined NSAID classes. Conclusions Our findings suggest modest benefits of at least some NSAIDs in reducing prostate cancer risk.
Developmental Biology | 2014
Corinne Lours-Calet; Lúcia Elvira Alvares; Amira S. El-Hanfy; Saniel Gandesha; Esther H. Walters; Débora Rodrigues Sobreira; Karl R. Wotton; Erika Cristina Jorge; Jennifer A. Lawson; A. Kelsey Lewis; Masazumi Tada; Colin Sharpe; Gabrielle Kardon; Susanne Dietrich
The vertebrate head–trunk interface (occipital region) has been heavily remodelled during evolution, and its development is still poorly understood. In extant jawed vertebrates, this region provides muscle precursors for the throat and tongue (hypopharyngeal/hypobranchial/hypoglossal muscle precursors, HMP) that take a stereotype path rostrally along the pharynx and are thought to reach their target sites via active migration. Yet, this projection pattern emerged in jawless vertebrates before the evolution of migratory muscle precursors. This suggests that a so far elusive, more basic transport mechanism must have existed and may still be traceable today. Here we show for the first time that all occipital tissues participate in well-conserved cell movements. These cell movements are spearheaded by the occipital lateral mesoderm and ectoderm that split into two streams. The rostrally directed stream projects along the floor of the pharynx and reaches as far rostrally as the floor of the mandibular arch and outflow tract of the heart. Notably, this stream leads and engulfs the later emerging HMP, neural crest cells and hypoglossal nerve. When we (i) attempted to redirect hypobranchial/hypoglossal muscle precursors towards various attractants, (ii) placed non-migratory muscle precursors into the occipital environment or (iii) molecularly or (iv) genetically rendered muscle precursors non-migratory, they still followed the trajectory set by the occipital lateral mesoderm and ectoderm. Thus, we have discovered evolutionarily conserved morphogenetic movements, driven by the occipital lateral mesoderm and ectoderm, that ensure cell transport and organ assembly at the head–trunk interface.
Frontiers in Aging Neuroscience | 2015
Júlia Meireles Nogueira; Katarzyna Hawrot; Colin Sharpe; Anna Noble; William M. Wood; Erika Cristina Jorge; David J. Goldhamer; Gabrielle Kardon; Susanne Dietrich
Pax7 expressing muscle stem cells accompany all skeletal muscles in the body and in healthy individuals, efficiently repair muscle after injury. Currently, the in vitro manipulation and culture of these cells is still in its infancy, yet muscle stem cells may be the most promising route toward the therapy of muscle diseases such as muscular dystrophies. It is often overlooked that muscular dystrophies affect head and body skeletal muscle differently. Moreover, these muscles develop differently. Specifically, head muscle and its stem cells develop from the non-somitic head mesoderm which also has cardiac competence. To which extent head muscle stem cells retain properties of the early head mesoderm and might even be able to switch between a skeletal muscle and cardiac fate is not known. This is due to the fact that the timing and mechanisms underlying head muscle stem cell development are still obscure. Consequently, it is not clear at which time point one should compare the properties of head mesodermal cells and head muscle stem cells. To shed light on this, we traced the emergence of head muscle stem cells in the key vertebrate models for myogenesis, chicken, mouse, frog and zebrafish, using Pax7 as key marker. Our study reveals a common theme of head muscle stem cell development that is quite different from the trunk. Unlike trunk muscle stem cells, head muscle stem cells do not have a previous history of Pax7 expression, instead Pax7 expression emerges de-novo. The cells develop late, and well after the head mesoderm has committed to myogenesis. We propose that this unique mechanism of muscle stem cell development is a legacy of the evolutionary history of the chordate head mesoderm.
Open Biology | 2015
Stephen Short; Tessa Peterkin; Matthew Guille; Roger Patient; Colin Sharpe
Vertebrate NCoR-family co-repressors play central roles in the timing of embryo and stem cell differentiation by repressing the activity of a range of transcription factors. They interact with nuclear receptors using short linear motifs (SLiMs) termed co-repressor for nuclear receptor (CoRNR) boxes. Here, we identify the pathway leading to increasing co-repressor diversity across the deuterostomes. The final complement of CoRNR boxes arose in an ancestral cephalochordate, and was encoded in one large exon; the urochordates and vertebrates then split this region between 10 and 12 exons. In Xenopus, alternative splicing is prevalent in NCoR2, but absent in NCoR1. We show for one NCoR1 exon that alternative splicing can be recovered by a single point mutation, suggesting NCoR1 lost the capacity for alternative splicing. Analyses in Xenopus and zebrafish identify that cellular context, rather than gene sequence, predominantly determines species differences in alternative splicing. We identify a pathway to diversity for the NCoR family beginning with the addition of a SLiM, followed by gene duplication, the generation of alternatively spliced isoforms and their differential deployment.
PLOS ONE | 2017
Daniela Lopes Cardoso; Colin Sharpe
Organismal complexity broadly relates to the number of different cell types within an organism and generally increases across a phylogeny. Whilst gene expression will underpin organismal complexity, it has long been clear that a simple count of gene number is not a sufficient explanation. In this paper, we use open-access information from the Ensembl databases to quantify the functional diversity of human genes that are broadly involved in transcription. Functional diversity is described in terms of the numbers of paralogues, protein isoforms and structural domains for each gene. The change in functional diversity is then calculated for up to nine orthologues from the nematode worm to human and correlated to the change in cell-type number. Those with the highest correlation are subject to gene ontology term enrichment and interaction analyses. We found that a range of genes that encode proteins associated with dynamic changes to chromatin are good candidates to contribute to organismal complexity.
Nucleic Acids Research | 2004
Marianne Malartre; Stephen Short; Colin Sharpe
The International Journal of Developmental Biology | 2000
Colin Sharpe; Kim Goldstone
Developmental Biology | 1994
Tanya T. Whitfield; Colin Sharpe; Christopher Wylie
The International Journal of Developmental Biology | 2006
Zhihong Zeng; Colin Sharpe; J. P. Simons; Dariusz C. Górecki
Biochemical and Biophysical Research Communications | 2005
Stephen Short; Marianne Malartre; Colin Sharpe