Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. K. Christen is active.

Publication


Featured researches published by D. K. Christen.


Applied Physics Letters | 1996

High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3Ox thick films on biaxially textured metals

Amit Goyal; David P. Norton; J. D. Budai; M. Paranthaman; Eliot D. Specht; D. M. Kroeger; D. K. Christen; Qing He; B. Saffian; F.A. List; D.F. Lee; P.M. Martin; C.E. Klabunde; E. Hartfield; V.K. Sikka

A method to obtain long lengths of flexible, biaxially oriented substrates with smooth, chemically compatible surfaces for epitaxial growth of high‐temperature superconductors is reported. The technique uses well established, industrially scalable, thermomechanical processes to impart a strong biaxial texture to a base metal. This is followed by vapor deposition of epitaxial buffer layers (metal and/or ceramic) to yield chemically compatible surfaces. Epitaxial YBa2Cu3Ox films grown on such substrates have critical current densities exceeding 105 A/cm2 at 77 K in zero field and have field dependencies similar to epitaxial films on single crystal ceramic substrates. Deposited conductors made using this technique offer a potential route for the fabrication of long lengths of high‐Jc wire capable of carrying high currents in high magnetic fields and at elevated temperatures.


Science | 1996

Epitaxial YBa2Cu3O7 on Biaxially Textured Nickel (001): An Approach to Superconducting Tapes with High Critical Current Density

David P. Norton; Amit Goyal; J. D. Budai; D. K. Christen; D. M. Kroeger; Eliot D. Specht; Qing He; Bernd Saffian; M. Paranthaman; C.E. Klabunde; D.F. Lee; Brian C. Sales; Fred A. List

In-plane—aligned, c axis—oriented YBa2Cu3O7 (YBCO) films with superconducting critical current densities Jc as high as 700,000 amperes per square centimeter at 77 kelvin have been grown on thermomechanically rolled-textured nickel (001) tapes by pulsed-laser deposition. Epitaxial growth of oxide buffer layers directly on biaxially textured nickel, formed by recrystallization of cold-rolled pure nickel, made possible the growth of YBCO films 1.5 micrometers thick with superconducting properties that are comparable to those observed for epitaxial films on single-crystal oxide substrates. This result represents a viable approach for the production of long superconducting tapes for high-current, high-field applications at 77 kelvin.


Science | 2006

High-Performance High-Tc Superconducting Wires

Sukill Kang; Amit Goyal; Jing Li; A.A. Gapud; P.M. Martin; L. Heatherly; James R. Thompson; D. K. Christen; F.A. List; M. Paranthaman; D.F. Lee

We demonstrated short segments of a superconducting wire that meets or exceeds performance requirements for many large-scale applications of high-temperature superconducting materials, especially those requiring a high supercurrent and/or a high engineering critical current density in applied magnetic fields. The performance requirements for these varied applications were met in 3-micrometer-thick YBa2Cu3O7-δ films epitaxially grown via pulsed laser ablation on rolling assisted biaxially textured substrates. Enhancements of the critical current in self-field as well as excellent retention of this current in high applied magnetic fields were achieved in the thick films via incorporation of a periodic array of extended columnar defects, composed of self-aligned nanodots of nonsuperconducting material extending through the entire thickness of the film. These columnar defects are highly effective in pinning the superconducting vortices or flux lines, thereby resulting in the substantially enhanced performance of this wire.


Nature | 2008

Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields.

F. Hunte; J. Jaroszynski; A. Gurevich; D. C. Larbalestier; R. Jin; Athena S. Sefat; Michael A. McGuire; Brian C. Sales; D. K. Christen; D. Mandrus

The recent synthesis of the superconductor LaFeAsO0.89F0.11 with transition temperature Tc ≈ 26 K (refs 1–4) has been quickly followed by reports of even higher transition temperatures in related compounds: 41 K in CeFeAsO0.84F0.16 (ref. 5), 43 K in SmFeAsO0.9F0.1 (ref. 6), and 52 K in NdFeAsO0.89F0.11 and PrFeAsO0.89F0.11 (refs 7, 8). These discoveries have generated much interest in the mechanisms and manifestations of unconventional superconductivity in the family of doped quaternary layered oxypnictides LnOTMPn (Ln: La, Pr, Ce, Sm; TM: Mn, Fe, Co, Ni; Pn: P, As), because many features of these materials set them apart from other known superconductors. Here we report resistance measurements of LaFeAsO0.89F0.11 at high magnetic fields, up to 45 T, that show a remarkable enhancement of the upper critical field Bc2 compared to values expected from the slopes dBc2/dT ≈ 2 T K-1 near Tc, particularly at low temperatures where the deduced Bc2(0) ≈ 63–65 T exceeds the paramagnetic limit. We argue that oxypnictides represent a new class of high-field superconductors with Bc2 values surpassing those of Nb3Sn, MgB2 and the Chevrel phases, and perhaps exceeding the 100 T magnetic field benchmark of the high-Tc copper oxides.


Nature | 2008

Very High Field Two-Band Superconductivity in LaFeAsO_0.89F_0.11

F. Hunte; J. Jaroszynski; A. Gurevich; D. C. Larbalestier; R. Jin; Athena S. Sefat; Michael A. McGuire; Brian C. Sales; D. K. Christen; D. Mandrus

The recent synthesis of the superconductor LaFeAsO0.89F0.11 with transition temperature Tc ≈ 26 K (refs 1–4) has been quickly followed by reports of even higher transition temperatures in related compounds: 41 K in CeFeAsO0.84F0.16 (ref. 5), 43 K in SmFeAsO0.9F0.1 (ref. 6), and 52 K in NdFeAsO0.89F0.11 and PrFeAsO0.89F0.11 (refs 7, 8). These discoveries have generated much interest in the mechanisms and manifestations of unconventional superconductivity in the family of doped quaternary layered oxypnictides LnOTMPn (Ln: La, Pr, Ce, Sm; TM: Mn, Fe, Co, Ni; Pn: P, As), because many features of these materials set them apart from other known superconductors. Here we report resistance measurements of LaFeAsO0.89F0.11 at high magnetic fields, up to 45 T, that show a remarkable enhancement of the upper critical field Bc2 compared to values expected from the slopes dBc2/dT ≈ 2 T K-1 near Tc, particularly at low temperatures where the deduced Bc2(0) ≈ 63–65 T exceeds the paramagnetic limit. We argue that oxypnictides represent a new class of high-field superconductors with Bc2 values surpassing those of Nb3Sn, MgB2 and the Chevrel phases, and perhaps exceeding the 100 T magnetic field benchmark of the high-Tc copper oxides.


Applied Physics Letters | 2009

Small anisotropy, weak thermal fluctuations, and high field superconductivity in Co-doped iron pnictide Ba(Fe1−xCox)2As2

A. Yamamoto; J. Jaroszynski; C. Tarantini; L. Balicas; J. Jiang; A. Gurevich; D. C. Larbalestier; Rongying Jin; Athena S. Sefat; Michael A. McGuire; Brian C. Sales; D. K. Christen; David Mandrus

We performed high-field magnetotransport and magnetization measurements on a single crystal of the 122-phase iron pnictide Ba(Fe1−xCox)2As2. Unlike the high-temperature superconductor cuprates and 1111-phase oxypnictides, Ba(Fe1−xCox)2As2 showed practically no broadening of the resistive transitions under magnetic fields up to 45 T. We report the temperature dependencies of the upper critical field Hc2 both parallel and perpendicular to the c-axis, the irreversibility field Hirrc(T), and a rather unusual symmetric volume pinning force curve Fp(H) suggestive of a strong pinning nanostructure. The anisotropy parameter γ=Hc2ab/Hc2c deduced from the slopes of dHc2ab/dT=4.9 T/K and dHc2c/dT=2.5 T/K decreases from ∼2 near Tc, to ∼1.5 at lower temperatures, much smaller than γ for 1111pnictides and high-Tc cuprates.


Physica C-superconductivity and Its Applications | 1997

Growth of biaxially textured buffer layers on rolled-Ni substrates by electron beam evaporation

M. Paranthaman; Amit Goyal; F.A. List; Eliot D. Specht; D.F. Lee; P.M. Martin; Qing He; D. K. Christen; David P. Norton; J. D. Budai; D. M. Kroeger

Abstract This paper describes the development of two buffer layer architectures on rolled-Ni substrates using an electron beam evaporation technique. The first buffer layer architecture consists of an epitaxial laminate of CeO 2 /Pd/Ni. The second alternative buffer layer consistes of an epitaxial laminate of YSZ/CeO 2 /Ni. The cube (100) texture in the Ni was produced by cold-rolling followed by recrystallization. The CeO 2 films were grown epitaxially on both Pd-buffered and textured-Ni substrates. The YSZ films were grown epitaxially on CeO 2 -buffered Ni substrates. The crystallographic orientation of the Pd, CeO 2 , and YSZ films were all (100). We also studied the effect of CeO 2 layer thickness and crack formation on textured-Ni substrates. The layer thickness was found to be critical. For some thickness, cracks formed in the CeO 2 layer. The presence of YSZ layers on the CeO 2 layers seem alleviate the cracks that are formed underneath. Our SEM studies showed that both CeO 2 (3–10 nm thick underlayer) and YSZ layers were smooth and continuous.


Applied Physics Letters | 2000

Low angle grain boundary transport in YBa2Cu3O7−δ coated conductors

Darren Verebelyi; D. K. Christen; R. Feenstra; Claudia Cantoni; Amit Goyal; D.F. Lee; M. Paranthaman; Paul N. Arendt; R. F. DePaula; James R. Groves; C. Prouteau

Second generation, high-temperature superconducting wires are based on buffered, metallic tape substrates of near single crystal texture. Strong alignment of adjacent grains was found to be necessary from previous work that suggested large angle, YBa2Cu3O7−δ [001]-tilt boundaries reduce Jc exponentially with increasing misorientation angle (θ). We pursue the low-θ regime by evaluating single grain boundaries (GB) and biaxially aligned polycrystalline films utilizing both the rolling-assisted biaxially textured substrates and ion-beam assisted deposition coated conductor architectures. Analysis concludes that an exponential dependence on Jc is applicable for θ≳4°, where the spacing between the periodic disordered regions along the GB become smaller than a coherence length.


Physica C-superconductivity and Its Applications | 1997

Deposition of biaxially-oriented metal and oxide buffer-layer films on textured Ni tapes: new substrates for high-current, high-temperature superconductors

Qing He; D. K. Christen; J. D. Budai; Eliot D. Specht; D.F. Lee; Amit Goyal; David P. Norton; M. Paranthaman; F.A. List; D. M. Kroeger

Abstract Techniques are reported for sputter deposition of biaxially oriented buffer-layers on textured Ni tapes. These buffered tapes can be employed as long, flexible, or large area substrates for biaxially-aligned high-temperature superconductors (HTS) with high critical current density Jc. Using deposition techniques at temperatures as low as 25°C, epitaxial Pd or Pt films were first deposited as a base layer on the textured Ni tapes, followed by deposition of biaxially oriented Ag or CeO2 buffer layers. Using Ar/4%H2 sputter gas, biaxially oriented CeO2 films were also grown directly on the textured Ni tapes, followed by the epitaxial growth of YSZ films. All the films show both strong in-plane and out-of-plane orientations. The effects of Ni surface smoothness on buffer-layer texture were also investigated.


Applied Physics Letters | 1992

Enhanced current density Jc and extended irreversibility in single‐crystal Bi2Sr2Ca1Cu2O8 via linear defects from heavy ion irradiation

J. R. Thompson; Yang Ren Sun; H. R. Kerchner; D. K. Christen; Brian C. Sales; Bryan C. Chakoumakos; A. D. Marwick; L. Civale; J.O. Thomson

Large enhancements in the critical current density Jc were produced in single crystals of the high‐temperature superconductor Bi2Sr2Ca1Cu2O8 by irradiation with high energy Sn ions. In addition, the irreversibility line was moved to considerably higher magnetic fields. In contrast with analogous studies on Y1Ba2Cu3O7, there was little, if any, selective pinning when the magnetizing field was applied parallel to the linear, ion‐damage‐produced tracks.

Collaboration


Dive into the D. K. Christen's collaboration.

Top Co-Authors

Avatar

M. Paranthaman

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amit Goyal

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. Feenstra

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. M. Kroeger

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. D. Budai

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tolga Aytug

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Eliot D. Specht

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Claudia Cantoni

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge