Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. K. Davydov is active.

Publication


Featured researches published by D. K. Davydov.


Atmospheric and Oceanic Optics | 2009

Vertical distribution of greenhouse gases above Western Siberia by the long-term measurement data

M. Yu. Arshinov; Boris D. Belan; D. K. Davydov; G. Inouye; Sh. Sh. Maksyutov; Toshinobu Machida; A. V. Fofonov

By the results of long-term (1997–2007) airborne sounding, the vertical distribution of three greenhouse gases such as CO2, CH4, and N2O above the south of Western Siberia is investigated. The average monthly profiles of the distribution of these components in height and the long-term change in gas concentration at different heights are presented. The climatic characteristics of the vertical distribution of these gases are determined.


Journal of Atmospheric and Oceanic Technology | 2012

Optik-É AN-30 Aircraft Laboratory for Studies of the Atmospheric Composition

P. N. Antokhin; Michael Yu. Arshinov; Boris D. Belan; D. K. Davydov; Eugenii V. Zhidovkin; G. A. Ivlev; Artiom V. Kozlov; Valerii S. Kozlov; Michael V. Panchenko; Ioganes E. Penner; Dimitrii A. Pestunov; D. V. Simonenkov; Gennadii N. Tolmachev; Alexander Fofonov; Vitalii S. Shamanaev; Vladimir P. Shmargunov

AbstractThe scientific instrumental complex of the Optik-E AN-30 aircraft laboratory developed at the Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences is described in detail. Specifications of the main units of the instrumental complex are presented. Special attention is given to the metrological support of measurements of the atmospheric parameters. Experimental capabilities of the aircraft laboratory are illustrated by the results obtained in recent flights over various regions of the Russian Federation.


Atmospheric and Oceanic Optics | 2009

Spatial and temporal variability of CO2 and CH4 concentrations in the surface atmospheric layer over West Siberia

M. Yu. Arshinov; Boris D. Belan; D. K. Davydov; G. Inouye; Oleg A. Krasnov; Sh. Sh. Maksyutov; Toshinobu Machida; A. V. Fofonov; K. Shimoyama

The diurnal and annual variation of the CO2 and CH4 concentrations and their spatial distribution over a network of sites developed over the territory of West Siberia are investigated. The CO2 concentration gradient between the northern and southern regions of the territory is retained during the entire year. The diurnal behavior of the methane concentration remains neutral for much of the year, so that it is only at the end of the springtime and at the beginning of the summer that it exhibits a significant amplitude. The annual variation of CO2 has a maximum in the month of December, the concentration starts to decrease in March, and reaches a minimum in July in August. In the central region of the territory, the annual variation of methane has two maxima (in July and in December and January); the greatest interyear methane concentration variability is recorded during the periods of the basic and secondary maxima.


Atmospheric and Oceanic Optics | 2011

The Blocking Role of the Ural Mountains in the Transborder Transfer of Impurities from Europe to Asia

P. N. Antokhin; V. G. Arshinova; M. Yu. Arshinov; Boris D. Belan; Sergey Borisovich Belan; D. K. Davydov; G. A. Ivlev; A. V. Kozlov; T. M. Rasskazchikova; A. V. Fofonov

Distribution of impurities over the region abutting the Ural Mountains is analyzed with the purpose of searching for traces of western European emissions over the territory of Siberia. It is shown that transborder transfer of impurities from Europe to Asia along direct trajectories (along a circle of latitude) from west to east is possible only in the free troposphere, in a layer higher than 2 km. Within the limits of the atmospheric boundary layer, the transfer of impurities from Europe to Siberia is probable only along trajectories rounding the Urals from north or south.


Izvestiya Atmospheric and Oceanic Physics | 2014

Comparison between satellite spectrometric and aircraft measurements of the gaseous composition of the troposphere over Siberia during the forest fires of 2012

M. Yu. Arshinov; S. V. Afonin; Boris D. Belan; V. V. Belov; Yu. V. Gridnev; D. K. Davydov; Philippe Nedelec; Jean-Daniel Paris; A. V. Fofonov

The vertical profiles of the O3, CO, CO2 and CH4 concentrations measured onboard the Optik Tu-134 aircraft laboratory and retrieved from data obtained with an IASI Fourier transform spectrometer operating aboard a MetOp satellite (European Space Agency) have been compared. This comparison shows that absolute differences between aircraft satellite ozone concentrations may vary from 55 to 15 ppb at the land surface and within the lower boundary layer and from 30 to −15 ppb at a height of 7000 m. Their relative differences range within 60 to 30% at a height of 500 m and 30 to −35% at a height of 7000 m. Absolute differences between aircraft and satellite carbon-monoxide concentrations may vary from 80 to 2300 ppb, while their relative differences range within −140 to 98%. For methane, the mean difference is maximal within the atmospheric boundary layer (90 ppb). According to the data on all profiles, the maximum and minimum differences reach 220 and 8 ppb, respectively, within the atmospheric boundary layer. Minimum differences range from zero at the land surface to −100 ppb in the upper troposphere. For carbon dioxide, the mean difference between the results of aircraft and satellite measurements ranges from −2 to −9 ppm. In the free troposphere, at a height of more than 3000 m, this difference is almost constant and amounts to −6 ppm. Over all flights, the maximum and minimum differences between aircraft and satellite CO2 concentrations range from 14 to −4 ppm and from −7 to −16 ppm, respectively, within the atmospheric boundary layer. In this case, the maximum and minimum relative deviations over all flights amount to 3.4 and −4.2%, respectively, within the atmospheric boundary layer. These differences are significantly larger than those found earlier for the background conditions. It is necessary to improve the vertical gas distribution models used in the algorithms of satellite-data processing.


Atmospheric and Oceanic Optics | 2018

Vertical Distributions of Gaseous and Aerosol Admixtures in Air over the Russian Arctic

O. Yu. Antokhina; P. N. Antokhin; V. G. Arshinova; M. Yu. Arshinov; Boris D. Belan; Sergey Borisovich Belan; D. K. Davydov; G. A. Ivlev; A. V. Kozlov; Philippe Nedelec; Jean-Daniel Paris; T. M. Rasskazchikova; Denis Savkin; D. V. Simonenkov; Tatyana K. Sklyadneva; Gennadii N. Tolmachev; A. V. Fofonov

Data on the vertical distribution of gaseous and aerosol composition of air, measured onboard the Tu-134 Optic airborne laboratory in October 2014 over the Kara Sea and coastal areas of the Russian Arctic, are presented. We revealed the specific features of the altitude distributions of CO2 and aerosol over the Kara Sea as compared to continental conditions. No significant deviations from continental distributions are found for CH4, CO, and O3.


22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics | 2016

Analysis of ground-based and satellite observations of atmospheric gas pollutants over Tomsk region under smoke mist conditions during summer 2012

Tatyana K. Sklyadneva; Tatyana B. Zhuravleva; D. K. Davydov; A. V. Kozlov

The content of gaseous species of atmosphere (СО, СO2, NO2, O3, СН4) during the period of smoke haze caused by forest fires in the summer 2012 over Siberia is analyzed on the base of satellite and ground-based (Tomsk) measurements. The temporal evolution of the spatial distributions of carbon monoxide and aerosol optical thickness of the atmosphere over Tomsk region is discussed.


20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics | 2014

Complex experiment on the study of microphysical, chemical, and optical properties of aerosol particles and estimation of atmospheric aerosol contribution in the Earth radiation budget

G. G. Matvienko; Boris D. Belan; M. V. Panchenko; O. A. Romanovskii; S. M. Sakerin; D. M. Kabanov; S. A. Turchinovich; Yu. S. Turchinovich; T. A. Eremina; V. S. Kozlov; Svetlana A. Terpugova; V. V. Pol’kin; Elena P. Yausheva; D. G. Chernov; T. B. Zuravleva; T. V. Bedareva; S. L. Odintsov; V. D. Burlakov; M. Yu. Arshinov; G. A. Ivlev; Denis Savkin; A. V. Fofonov; V. A. Gladkikh; A. P. Kamardin; D. B. Belan; M. V. Grishaev; V. V. Belov; S. V. Afonin; Yu. S. Balin; Grigorii P. Kokhanenko

The main aim of the work was complex experimental measurements of microphysical, chemical, and optical parameters of aerosol particles in the surface air layer and free atmosphere. From the measurement data, the entire set of aerosol optical parameters was retrieved, required for radiation calculations. Three measurement runs were carried out in 2013 within the experiment: in spring, when the aerosol generation maximum is observed, in summer (July), when the altitude of the atmospheric boundary layer is the highest, and in the late summer – early autumn, when the second nucleation period is recorded. The following instruments were used in the experiment: diffusion aerosol spectrometers (DAS), GRIMM photoelectric counters, angle-scattering nephelometers, aethalometer, SP-9/6 sun photometer, СЕ 318 Sun-Sky radiometer (AERONET), MS-53 pyrheliometer, MS-802 pyranometer, ASP aureole photometer, SSP scanning photometer, TU-134 Optik flying laboratory, Siberian lidar station, stationary multiwave lidar complex LOZA-M, spectrophotometric complex for measuring total ozone and NO2, multivariable instrument for measuring atmospheric parameters, METEO-2 USM, 2.4 AEHP-2.4m station for satellite data receive. Results of numerical calculations of solar down-fluxes on the Earth’s surface were compared with the values measured in clear air in the summer periods in 2010—2012 in a background region of Siberian boreal zone. It was shown that the relative differences between model and experimental values of direct and total radiation do not exceed 1% and 3%, respectively, with accounting for instrumental errors and measurement error of atmospheric parameters. Thus, independent data on optical, meteorological, and microphysical atmospheric parameters allow mutual intercalibration and supplement and, hence, provide for qualitatively new data, which can explain physical nature of processes that form the vertical structure of the aerosol filed.


Chemical, Biochemical and Environmental Fiber Sensors IX | 1997

TOR station for environmental monitoring

Mikhail Arshinov; V. G. Arshinova; Boris D. Belan; D. K. Davydov; Valentin K. Kovalevskii; Aleksandr P. Plotnikov; Evgenii V. Pokrovskii; T. M. Rasskazchikova; D. V. Simonenkov; Tatyana K. Sklyadneva; Gennadii N. Tolmachev

In December 1992 a station for atmospheric observations has been put into operation at the Institute of Atmospheric Optics within the frameworks of the program of ecological monitoring of Siberia. The station provides for acquiring data on gas and aerosol composition of the atmosphere, on meteorological quantities, and the background of gamma radiation. The station operates day and night and the whole year round. All the measurement procedures are fully automated. Readouts from the measuring devices are performed very hour 10 minutes averaged. In addition, synoptic information is also received at the station. Periodically gas chromatographic analysis is being done to determine concentrations of hydrocarbons from the methane row. Occasionally, chemical composition of suspended matter is determined relative to 39 ingredients. The station is located to the north-east of Tomsk, Akademgorodok. Therefore sometimes it measures air mass coming from Tomsk down town area and sometimes the air mass from rural areas. As a result information obtained at this station should be typical for recreation zones around Tomsk.


EPJ Web of Conferences | 2016

COMPLEX AEROSOL EXPERIMENT IN WESTERN SIBERIA (APRIL - OCTOBER 2013)

G. G. Matvienko; Boris D. Belan; M. V. Panchenko; O. A. Romanovskii; S. M. Sakerin; D. M. Kabanov; S. A. Turchinovich; Yu. S. Turchinovich; T. A. Eremina; V. S. Kozlov; Svetlana A. Terpugova; V. V. Pol’kin; Elena P. Yausheva; D. G. Chernov; T.B. Zuravleva; T.V. Bedareva; S.L. Odintsov; V. D. Burlakov; M. Yu. Arshinov; G. A. Ivlev; Denis Savkin; A. V. Fofonov; V.A. Gladkikh; A.P. Kamardin; Yu. S. Balin; Grigorii P. Kokhanenko; Ioganes E. Penner; S. V. Samoilova; P. N. Antokhin; V. G. Arshinova

Collaboration


Dive into the D. K. Davydov's collaboration.

Top Co-Authors

Avatar

Boris D. Belan

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. V. Fofonov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

M. Yu. Arshinov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

G. A. Ivlev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. V. Kozlov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

D. V. Simonenkov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. N. Antokhin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

V. G. Arshinova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Toshinobu Machida

National Institute for Environmental Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge