Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. L. Fehl is active.

Publication


Featured researches published by D. L. Fehl.


Physics of Plasmas | 1998

Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ

Rick B. Spielman; C. Deeney; Gordon Andrew Chandler; M.R. Douglas; D. L. Fehl; M. K. Matzen; D. H. McDaniel; T. J. Nash; John L. Porter; T. W. L. Sanford; J. F. Seamen; W. A. Stygar; K.W. Struve; Stephen P. Breeze; J. McGurn; J. Torres; D. M. Zagar; T. Gilliland; D. Jobe; J. L. McKenney; R. C. Mock; M. Vargas; T. Wagoner; D.L. Peterson

Here Z, a 60 TW/5 MJ electrical accelerator located at Sandia National Laboratories, has been used to implode tungsten wire-array Z pinches. These arrays consisted of large numbers of tungsten wires (120–300) with wire diameters of 7.5 to 15 μm placed in a symmetric cylindrical array. The experiments used array diameters ranging from 1.75 to 4 cm and lengths from 1 to 2 cm. A 2 cm long, 4 cm diam tungsten array consisting of 240, 7.5 μm diam wires (4.1 mg mass) achieved an x-ray power of ∼200 TW and an x-ray energy of nearly 2 MJ. Spectral data suggest an optically thick, Planckian-like radiator below 1000 eV. One surprising experimental result was the observation that the total radiated x-ray energies and x-ray powers were nearly independent of pinch length. These data are compared with two-dimensional radiation magnetohydrodynamic code calculations.


Review of Scientific Instruments | 1999

FILTERED X-RAY DIODE DIAGNOSTICS FIELDED ON THE Z ACCELERATOR FOR SOURCE POWER MEASUREMENTS

Gordon Andrew Chandler; C. Deeney; M. E. Cuneo; D. L. Fehl; J. McGurn; Rick B. Spielman; J. Torres; J. L. McKenney; J. Mills; K.W. Struve

Filtered x-ray diode (XRD) detectors are used as primary radiation flux diagnostics on Sandia’s Z accelerator, which generates nominally a 200-TW, 2-MJ, x-ray pulse. Given such flux levels and XRD sensitivities the detectors are being fielded 23 m from the source. The standard diagnostic setup and sensitivities are discussed. Vitreous carbon photocathodes are being used to reduce the effect of hydrocarbon contamination present in the Z-machine vacuum system. Nevertheless pre- and postcalibration data taken indicate spectrally dependent changes in the sensitivity of these detectors by up to factors of 2 or 3.


Physics of Plasmas | 1999

High Temperature Dynamic Hohlraums on the Pulsed Power Driver Z

T. J. Nash; Mark S. Derzon; Gordon Andrew Chandler; R. J. Leeper; D. L. Fehl; Joel Staton Lash; C. L. Ruiz; G. W. Cooper; J. F. Seaman; J. McGurn; S. Lazier; J. Torres; D. Jobe; T. Gilliland; M. J. Hurst; R. C. Mock; P. Ryan; Dan S. Nielsen; J. C. Armijo; J. L. McKenney; R. Hawn; D. E. Hebron; J. J. MacFarlane; D. Petersen; R.L. Bowers; W. Matuska; D. D. Ryutov

In the concept of the dynamic hohlraum an imploding Z pinch is optically thick to its own radiation. Radiation may be trapped inside the pinch to give a radiation temperature inside the pinch greater than that outside the pinch. The radiation is typically produced by colliding an outer Z-pinch liner onto an inner liner. The collision generates a strongly radiating shock, and the radiation is trapped by the outer liner. As the implosion continues after the collision, the radiation temperature may continue to increase due to ongoing PdV (pressure times change in volume) work done by the implosion. In principal, the radiation temperature may increase to the point at which the outer liner burns through, becomes optically thin, and no longer traps the radiation. One application of the dynamic hohlraum is to drive an ICF (inertial confinement fusion) pellet with the trapped radiation field. Members of the dynamic hohlraum team at Sandia National Labs have used the pulsed power driver Z (20 MA, 100 ns) to create...


Physics of Plasmas | 2001

Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept

Michael Edward Cuneo; Roger A. Vesey; John L. Porter; Gordon Andrew Chandler; D. L. Fehl; T. Gilliland; D.L. Hanson; J. McGurn; Paul Reynolds; Laurence E. Ruggles; Hans Seamen; Rick B. Spielman; K.W. Struve; W. A. Stygar; Walter W. Simpson; J. Torres; David Franklin Wenger; James H. Hammer; Peter W. Rambo; D.L. Peterson; George C. Idzorek

Initial experiments to study the Z-pinch-driven hohlraum high-yield inertial confinement fusion (ICF) concept of Hammer, Tabak, and Porter [Hammer et al., Phys. Plasmas 6, 2129 (1999)] are described. The relationship between measured pinch power, hohlraum temperature, and secondary hohlraum coupling (“hohlraum energetics”) is well understood from zero-dimensional semianalytic, and two-dimensional view factor and radiation magnetohydrodynamics models. These experiments have shown the highest x-ray powers coupled to any Z-pinch-driven secondary hohlraum (26±5 TW), indicating the concept could scale to fusion yields of >200 MJ. A novel, single-sided power feed, double-pinch driven secondary that meets the pinch simultaneity requirements for polar radiation symmetry has also been developed. This source will permit investigation of the pinch power balance and hohlraum geometry requirements for ICF relevant secondary radiation symmetry, leading to a capsule implosion capability on the Z accelerator [Spielman et...


Review of Scientific Instruments | 1999

Fast Resistive Bolometry

Rick B. Spielman; C. Deeney; D. L. Fehl; D.L. Hanson; N. R. Keltner; J. McGurn; J. L. McKenney

Resistive bolometry is an accurate, robust, spectrally broadband technique for measuring absolute x-ray fluence and flux. Bolometry is an independent technique for x-ray measurements that is based on a different set of physical properties than other diagnostics such as x-ray diodes, photoconducting detectors, and P-I-N diodes. Bolometers use the temperature-driven change in element resistivity to determine the total deposited energy. The calibration of such a device is based on fundamental material properties and its physical dimensions. We describe the use of nickel and gold bolometers to measure x rays generated by high-power z pinches on Sandia’s Saturn and Z accelerators. The Sandia bolometer design described herein has a pulse response of ∼1 ns. We describe in detail the fabrication, fielding, and data analysis issues leading to highly accurate x-ray measurements. The fundamental accuracy of resistive bolometry will be discussed.


Physics of Plasmas | 1998

K-shell radiation physics in the ultrahigh optical depth pinches of the Z generator

J. P. Apruzese; P. E. Pulsifer; J. Davis; R. W. Clark; K. G. Whitney; J.W. Thornhill; T. W. L. Sanford; Gordon Andrew Chandler; C. Deeney; D. L. Fehl; T. J. Nash; Rick B. Spielman; W. A. Stygar; K.W. Struve; R. C. Mock; T. Gilliland; D. Jobe; J. McGurn; J. F. Seamen; J. Torres; M. Vargas

Al:Mg alloy wire arrays of mass loads 1.3–3.6 mg/cm have been imploded with peak currents of 19 MA on the 60 TW Z generator [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)] at Sandia National Laboratories. The large mass loads have resulted in the highest K-shell x-ray line optical depths (∼103) produced to date in Z-pinches. Analysis of the time-resolved spectrum of a 2.1 mg/cm shot near the time of peak compression has yielded a temperature–density profile of the pinch that approximately reproduces all features of the x-ray data except the continuum above 5 keV, which is underpredicted. The Ly α/He α ratio for Al is shown to be enhanced relative to that of Mg by two mechanisms: photopumped ladder ionization and absorption of the Al He-like line in a cool outer halo. This analysis and comparisons to some Ti shots demonstrates that the K-shell yield of Al is significantly reduced by line and continuum self-absorption, but that of Ti is not.


Review of Scientific Instruments | 1997

Target diagnostic system for the national ignition facility (invited)

R. J. Leeper; Gordon Andrew Chandler; G. W. Cooper; M. S. Derzon; D. L. Fehl; D. E. Hebron; A. R. Moats; D. D. Noack; John L. Porter; Laurence E. Ruggles; C. L. Ruiz; J. Torres; M. D. Cable; P. M. Bell; C. A. Clower; B. A. Hammel; D. H. Kalantar; V. P. Karpenko; R. L. Kauffman; J.D. Kilkenny; F. D. Lee; R. A. Lerche; B. J. MacGowan; M. J. Moran; M. B. Nelson; W. Olson; T. J. Orzechowski; Thomas W. Phillips; D. Ress; G. L. Tietbohl

A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x ray, gamma ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating in the high radiation, electromagnetic pulse, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in t...


Physics of Plasmas | 1997

Inertial confinement fusion ablator physics experiments on Saturn and Nova

R. E. Olson; John L. Porter; Gordon Andrew Chandler; D. L. Fehl; D. O. Jobe; R. J. Leeper; M. K. Matzen; J. McGurn; D. D. Noack; Laurence E. Ruggles; P. Sawyer; J. Torres; M. Vargas; D. M. Zagar; H. N. Kornblum; Thaddeus J. Orzechowski; D. W. Phillion; L. J. Suter; A. R. Thiessen; R. J. Wallace

The Saturn pulsed power accelerator [R. B. Spielman et al., in Proceedings of the 2nd International Conference on Dense Z-pinches, Laguna Beach, CA, 1989, edited by N. R. Pereira, J. Davis, and N. Rostoker (American Institute of Physics, New York, 1989), p. 3] at Sandia National Laboratories (SNL) and the Nova laser [J. T. Hunt and D. R. Speck, Opt. Eng. 28, 461 (1989)] at Lawrence Livermore National Laboratory (LLNL) have been used to explore techniques for studying the behavior of ablator material in x-ray radiation environments comparable in magnitude, spectrum, and duration to those that would be experienced in National Ignition Facility (NIF) hohlraums [J. D. Lindl, Phys. Plasmas 2, 3933 (1995)]. The large x-ray outputs available from the Saturn pulsed-power-driven z pinch have enabled us to drive hohlraums of full NIF ignition scale size at radiation temperatures and time scales comparable to those required for the low-power foot pulse of an ignition capsule. The high-intensity drives available in t...


Journal of Applied Physics | 1982

A radial ion diode for generating intense focused proton beams

D. J. Johnson; E. J. T. Burns; A. V. Farnsworth; R. J. Leeper; J. P. Quintenz; K. W. Bieg; P. L. Dreike; D. L. Fehl; J. R. Freeman; F. C. Perry

A magnetically insulated light ion diode which has produced an ion beam with total current exceeding 400 kA for 25 ns and generated a proton current density approaching 500 kA/cm2 is described. This intense beam current is achieved in a noncurrent neutralized mode via geometric focusing and a balance between self‐magnetic field and space‐charge forces. A number of techniques are described which have been used to diagnose the beam production, transport, and focusing. These include observation of Kα emission due to beam‐induced atomic excitation, prompt‐γ radiation due to beam‐induced nuclear reactions, and thermal emission due to beam‐target heating.


Applied Physics Letters | 1999

Soft x-ray measurements of z-pinch-driven vacuum hohlraums

K. L. Baker; John L. Porter; L. E. Ruggles; Gordon Andrew Chandler; Chris Deeney; Marielis F. Vargas; Ann Moats; Ken Struve; J. Torres; J. McGurn; Walter W. Simpson; D. L. Fehl; R. E. Chrien; W. Matuska; George C. Idzorek

This article reports the experimental characterization of a z-pinch driven-vacuum hohlraum. The authors have measured soft x-ray fluxes of 5 x 10{sup 12} W/cm{sup 2} radiating from the walls of hohlraums which are 2.4--2.5 cm in diameter by 1 cm tall. The x-ray source used to drive these hohlraums was a z-pinch consisting of a 300 wire tungsten array driven by a 2 MA, 100 ns current pulse. In this hohlraum geometry, the z-pinch x-ray source can produce energies in excess of 800 kJ and powers in excess of 100 TW to drive these hohlraums. The x-rays released in these hohlraums represent greater than a factor of 25 in energy and more than a factor of three in x-ray power over previous laboratory-driven hohlraums.

Collaboration


Dive into the D. L. Fehl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. J. Leeper

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

W. A. Stygar

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

T. J. Nash

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Rick B. Spielman

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

J. Torres

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

K.W. Struve

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

J. McGurn

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

T. W. L. Sanford

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

C. L. Ruiz

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge