Da-Liang Wang
Tsinghua University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Da-Liang Wang.
Cellular Signalling | 2013
Lei Zhao; Da-Liang Wang; Yan Liu; Su Chen; Fang-Lin Sun
hMOF is the major acetyltransferase of histone H4 lysine 16 (H4K16) in humans, but its biological function is not well understood. In this study, hMOF was found to be more frequently highly expressed in non-small cell lung cancer (NSCLC) than corresponding normal tissues (P < 0.001). In addition, up-regulation of H4K16 acetylation was also more frequent in NSCLC than normal tissues (P = 0.002). Furthermore, hMOF promotes the cell proliferation, migration and adhesion of NSCLC cell lines. Microarray analysis and chromatin immunoprecipitation (ChIP) assays suggest that hMOF modulates proliferation and metastasis by regulating histone H4K16 acetylation at the promoter regions of downstream target genes. Moreover, hMOF promotes S phase entry via Skp2. These findings suggest that hMOF contributes to NSCLC tumorigenesis.
Journal of Biological Chemistry | 2012
Yan Liu; Da-Liang Wang; Su Chen; Lei Zhao; Fang-Lin Sun
Background: Ras signaling is known to be critical for tumor progression. Results: Ras-PI3K regulates H3K56 acetylation (H3K56ac) via the MDM2-dependent degradation of CBP/p300. H3K56ac is revealed to be associated with the transcription, proliferation, and migration of tumor cells. Conclusion: H3K56 acetylation is a critical component of the oncogenic Ras-PI3K pathway. Significance: The Ras-PI3K-AKT-H3K56ac pathway is a potential target for cancer therapy. It is well established that the small GTPase Ras promotes tumor initiation by activating at least three different mediators: Raf, PI3K, and Ras-like (Ral) guanine nucleotide exchange factors. However, the exact mechanisms that underlie these different Ras signaling pathways, which are involved in tumor progression, remain to be elucidated. In this study, we report that the Ras-PI3K pathway, but not Raf or the Ral guanine nucleotide exchange factors, specifically targets the acetylation of H3 at lysine 56 (H3K56ac), thereby regulating tumor cell activity. We demonstrate that the Ras-PI3K-induced reduction in H3K56ac is associated with the proliferation and migration of tumor cells by targeting the transcription of tumor-associated genes. The depletion of the histone deacetyltransferases Sirt1 and Sirt2 rescues the Ras-PI3K-induced decrease in H3K56ac, gene transcription, tumor cell proliferation, and tumor cell migration. Furthermore, we demonstrate that the Ras-PI3K-AKT pathway regulates H3K56ac via the MDM2-dependent degradation of CREB-binding protein/p300. Taken together, the results of this study demonstrate that the Ras-PI3K signaling pathway targets specific epigenetic modifications in tumor cells.
Molecular and Cellular Biology | 2012
Su Chen; Da-Liang Wang; Yan Liu; Lei Zhao; Fang-Lin Sun
ABSTRACT Maintaining an appropriate cellular concentration of p53 is critical for cell survival and normal development in various organisms. In this study, we provide evidence that the human E2 ubiquitin-conjugating enzyme RAD6 plays a critical role in regulating p53 protein levels under both normal and stress conditions. Knockdown and overexpression of RAD6 affected p53 turnover and transcription. We showed that RAD6 can form a ternary complex with MDM2 and p53 that contributes to the degradation of p53. Chromatin immunoprecipitation (ChIP) analysis showed that RAD6 also binds to the promoter and coding regions of the p53 gene and modulates the levels of H3K4 and K79 methylation on local chromatin. When the cells were exposed to stress stimuli, the RAD6-MDM2-p53 ternary complex was disrupted; RAD6 was then recruited to the chromatin of the p53 gene, resulting in an increase in histone methylation and p53 transcription. Further studies showed that stress-induced p53 transcriptional activation, cell apoptosis, and disrupted cell cycle progression are all RAD6 dependent. Overall, this work demonstrates that RAD6 regulates p53 levels in a “yin-yang” manner through a combination of two distinct mechanisms in mammalian cells.
Cell Research | 2012
Su Chen; Juan Li; Da-Liang Wang; Fang-Lin Sun
Histone H2B lysine 120 monoubiquitination is required for embryonic stem cell differentiation
Molecular and Cellular Biology | 2015
Su Chen; Chen Wang; Luxi Sun; Da-Liang Wang; Lu Chen; Zhuan Huang; Qi Yang; Jie Gao; Xi-Bin Yang; Jian-Feng Chang; Ping Chen; Li Lan; Zhiyong Mao; Fang-Lin Sun
ABSTRACT Efficient DNA double-strand break (DSB) repair is critical for the maintenance of genome stability. Unrepaired or misrepaired DSBs cause chromosomal rearrangements that can result in severe consequences, such as tumorigenesis. RAD6 is an E2 ubiquitin-conjugating enzyme that plays a pivotal role in repairing UV-induced DNA damage. Here, we present evidence that RAD6 is also required for DNA DSB repair via homologous recombination (HR) by specifically regulating the degradation of heterochromatin protein 1α (HP1α). Our study indicates that RAD6 physically interacts with HP1α and ubiquitinates HP1α at residue K154, thereby promoting HP1α degradation through the autophagy pathway and eventually leading to an open chromatin structure that facilitates efficient HR DSB repair. Furthermore, bioinformatics studies have indicated that the expression of RAD6 and HP1α exhibits an inverse relationship and correlates with the survival rate of patients.
PLOS ONE | 2014
Lei Zhao; Haihui Gu; Jian-Feng Chang; Junyu Wu; Da-Liang Wang; Su Chen; Xiaomei Yang; Baohua Qian
Background MicroRNAs (miRNAs) are a class of small non-coding single-stranded RNA molecules that inhibit gene expression at post-transcriptional level. Gadd45g (growth arrest and DNA-damage-inducible 45 gamma) is a stress-response protein, which has been implicated in several biological processes, including DNA repair, the cell cycle and cell differentiation. Results In this work, we found that miR-383 is a negative regulator of Gadd45g. Forced expression of miR-383 decreased the expression of Gadd45g through binding to the 3′ untranslated region (3′-UTR), whereas inhibition of miR-383 increased Gadd45g expression. The presence of miR-383 increased the cellular sensitivity to DNA damage in breast cancer cells, which was rescued by ectopic expression of Gadd45g without the 3′-UTR. miR-383 also regulates the expression of Gadd45g in embryonic stem (ES) cells, but not their apoptosis under genotoxic stress. miR-383 was further showed to negatively regulate ES cell differentiation via targeting Gadd45g, which subsequently modulates the pluripotency-associated genes. Taken together, our study demonstrates that miR-383 is a negative regulator of Gadd45g in both tumor cells and ES cells, however, has distinct function in regulating cell apoptosis. miR-383 may be used as antineoplastic agents in cancer chemotherapy. Conclusion We demonstrate for the first time that miR-383 can specifically regulates the expression of Gadd45g by directly targeting to the 3-UTR region of Gadd45g mRNA, a regulatory process conserved in human tumor cells and mouse embryonic stem cells. These two compotents can be potentially used as antineoplastic agents in cancer chemotherapy.
Journal of Biological Chemistry | 2011
Su Chen; Hui-Min Wei; Wen-Wen Lv; Da-Liang Wang; Fang-Lin Sun
The turnover of tumor suppressor p53 is critical for its role in various cellular events. However, the pathway that regulates the turnover of the Drosophila melanogaster DMP53 is largely unknown. Here, we provide evidence for the first time that the E2 ligase, Drosophila homolog of Rad6 (dRad6/Dhr6), plays an important role in the regulation of DMP53 turnover. Depletion of dRad6 results in DMP53 accumulation, whereas overexpression of dRad6 causes enhanced DMP53 degradation. We show that dRad6 specifically interacts with DMP53 at the transcriptional activation domain and regulates DMP53 ubiquitination. Loss of dRad6 function in transgenic flies leads to lethalities and altered morphogenesis. The dRad6-induced defects in cell proliferation and apoptosis are found to be DMP53-dependent. The loss of dRad6 induces an accumulation of DMP53 that enhances the activation of apoptotic genes and leads to apoptosis in the presence of stress stimuli. In contrast to that, the E3 ligase is the primary factor that regulates p53 turnover in mammals, and this work demonstrates that the E2 ligase dRad6 is critical for the control of DMP53 degradation in Drosophila.
Nucleic Acids Research | 2016
Su Chen; Yuanya Jing; Xuan Kang; Lu Yang; Da-Liang Wang; Wei Zhang; Lei Zhang; Ping Chen; Jian-Feng Chang; Xiao-Mei Yang; Fang-Lin Sun
Abstract Autophagy is an evolutionarily conserved cellular process that primarily participates in lysosome-mediated protein degradation. Although autophagy is a cytoplasmic event, how epigenetic pathways are involved in the regulation of autophagy remains incompletely understood. Here, we found that H2B monoubiquitination (H2Bub1) is down-regulated in cells under starvation conditions and that the decrease in H2Bub1 results in the activation of autophagy. We also identified that the deubiquitinase USP44 is responsible for the starvation-induced decrease in H2Bub1. Furthermore, the changes in H2Bub1 affect the transcription of genes involved in the regulation of autophagy. Therefore, this study reveals a novel epigenetic pathway for the regulation of autophagy through H2Bub1.
Chromosoma | 2011
Daoyong Zhang; Da-Liang Wang; Fang-Lin Sun
The condensed heterochromatic domains are known to be associated with transcriptional repression and cell differentiation. Here, we investigate the function of heterochromatin protein HP1b, a member of the HP1 family in Drosophila melanogaster, in transcription and development. Both knockdown and overexpression of HP1b resulted in partial lethality, indicating that HP1b is essential for the normal development. In contrast to the positive role of HP1a in heterochromatin formation, overexpression of HP1b decondensed the pericentromeric heterochromatin and reduced the association of HP1a and H3K9me2 with it, both known markers of pericentric heterochromatin. Interestingly, the structure of the heterochromatic fourth chromosome appeared not to be affected. Further experiments showed that the presence of HP1a partially rescued the lethality caused by HP1b overexpression in males, and it fully rescued the lethality in females. Consistent with this observation, the defective transcription of heterochromatic genes was also partially restored in the presence of HP1a. Overall, this study argues that HP1b counteracts HP1a function both in heterochromatin formation and in the transcriptional regulation of euchromatic genes.
Oncotarget | 2015
Chen Wang; Jian-Feng Chang; Hongli Yan; Da-Liang Wang; Yan Liu; Yuanya Jing; Meng Zhang; Yu-Long Men; Dongdong Lu; Xiao-Mei Yang; Su Chen; Fang-Lin Sun
Chromatin is a highly organized and dynamic structure in eukaryotic cells. The change of chromatin structure is essential in many cellular processes, such as gene transcription, DNA damage repair and others. Anti-silencing function 1 (ASF1) is a histone chaperone that participates in chromatin higher-order organization and is required for appropriate chromatin assembly. In this study, we identified the E2 ubiquitin-conjugating enzyme RAD6 as an evolutionary conserved interacting protein of ASF1 in D. melanogaster and H. sapiens that promotes the turnover of ASF1A by cooperating with a well-known E3 ligase, MDM2, via ubiquitin-proteasome pathway in H. sapiens. Further functional analyses indicated that the interplay between RAD6 and ASF1A associates with tumorigenesis. Together, these data suggest that the RAD6-MDM2 ubiquitin ligase machinery is critical for the degradation of chromatin-related proteins.