Fang-Lin Sun
Tsinghua University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fang-Lin Sun.
Molecular and Cellular Biology | 2001
Fang-Lin Sun; Matthew H. Cuaycong; Sarah C. R. Elgin
ABSTRACT We have used line HS-2 of Drosophila melanogaster, carrying a silenced transgene in the pericentric heterochromatin, to investigate in detail the chromatin structure imposed by this environment. Digestion of the chromatin with micrococcal nuclease (MNase) shows a nucleosome array with extensive long-range order, indicating regular spacing, and with well-defined MNase cleavage fragments, indicating a smaller MNase target in the linker region. The repeating unit is ca. 10 bp larger than that observed for bulkDrosophila chromatin. The silenced transgene shows both a loss of DNase I-hypersensitive sites and decreased sensitivity to DNase I digestion within an array of nucleosomes lacking such sites; within such an array, sensitivity to digestion by MNase is unchanged. The ordered nucleosome array extends across the regulatory region of the transgene, a shift that could explain the loss of transgene expression in heterochromatin. Highly regular nucleosome arrays are observed over several endogenous heterochromatic sequences, indicating that this is a general feature of heterochromatin. However, genes normally active within heterochromatin (rolled and light) do not show this pattern, suggesting that the altered chromatin structure observed is associated with regions that are silent, rather than being a property of the domain as a whole. The results indicate that long-range nucleosomal ordering is linked with the heterochromatic packaging that imposes gene silencing.
Molecular and Cellular Biology | 2004
Fang-Lin Sun; Karmella Haynes; Cory L. Simpson; Susan D. Lee; Lynne Collins; Jo Wuller; Joel C. Eissenberg; Sarah C. R. Elgin
ABSTRACT The heterochromatic domains of Drosophila melanogaster (pericentric heterochromatin, telomeres, and the fourth chromosome) are characterized by histone hypoacetylation, high levels of histone H3 methylated on lysine 9 (H3-mK9), and association with heterochromatin protein 1 (HP1). While the specific interaction of HP1 with both H3-mK9 and histone methyltransferases suggests a mechanism for the maintenance of heterochromatin, it leaves open the question of how heterochromatin formation is targeted to specific domains. Expression characteristics of reporter transgenes inserted at different sites in the fourth chromosome define a minimum of three euchromatic and three heterochromatic domains, interspersed. Here we searched for cis-acting DNA sequence determinants that specify heterochromatic domains. Genetic screens for a switch in phenotype demonstrate that local deletions or duplications of 5 to 80 kb of DNA flanking a transposon reporter can lead to the loss or acquisition of variegation, pointing to short-range cis-acting determinants for silencing. This silencing is dependent on HP1. A switch in transgene expression correlates with a switch in chromatin structure, judged by nuclease accessibility. Mapping data implicate the 1360 transposon as a target for heterochromatin formation. We propose that heterochromatin formation is initiated at dispersed repetitive elements along the fourth chromosome and spreads for ∼10 kb or until encountering competition from a euchromatic determinant.
Cellular Signalling | 2013
Lei Zhao; Da-Liang Wang; Yan Liu; Su Chen; Fang-Lin Sun
hMOF is the major acetyltransferase of histone H4 lysine 16 (H4K16) in humans, but its biological function is not well understood. In this study, hMOF was found to be more frequently highly expressed in non-small cell lung cancer (NSCLC) than corresponding normal tissues (P < 0.001). In addition, up-regulation of H4K16 acetylation was also more frequent in NSCLC than normal tissues (P = 0.002). Furthermore, hMOF promotes the cell proliferation, migration and adhesion of NSCLC cell lines. Microarray analysis and chromatin immunoprecipitation (ChIP) assays suggest that hMOF modulates proliferation and metastasis by regulating histone H4K16 acetylation at the promoter regions of downstream target genes. Moreover, hMOF promotes S phase entry via Skp2. These findings suggest that hMOF contributes to NSCLC tumorigenesis.
Journal of Biological Chemistry | 2012
Yan Liu; Da-Liang Wang; Su Chen; Lei Zhao; Fang-Lin Sun
Background: Ras signaling is known to be critical for tumor progression. Results: Ras-PI3K regulates H3K56 acetylation (H3K56ac) via the MDM2-dependent degradation of CBP/p300. H3K56ac is revealed to be associated with the transcription, proliferation, and migration of tumor cells. Conclusion: H3K56 acetylation is a critical component of the oncogenic Ras-PI3K pathway. Significance: The Ras-PI3K-AKT-H3K56ac pathway is a potential target for cancer therapy. It is well established that the small GTPase Ras promotes tumor initiation by activating at least three different mediators: Raf, PI3K, and Ras-like (Ral) guanine nucleotide exchange factors. However, the exact mechanisms that underlie these different Ras signaling pathways, which are involved in tumor progression, remain to be elucidated. In this study, we report that the Ras-PI3K pathway, but not Raf or the Ral guanine nucleotide exchange factors, specifically targets the acetylation of H3 at lysine 56 (H3K56ac), thereby regulating tumor cell activity. We demonstrate that the Ras-PI3K-induced reduction in H3K56ac is associated with the proliferation and migration of tumor cells by targeting the transcription of tumor-associated genes. The depletion of the histone deacetyltransferases Sirt1 and Sirt2 rescues the Ras-PI3K-induced decrease in H3K56ac, gene transcription, tumor cell proliferation, and tumor cell migration. Furthermore, we demonstrate that the Ras-PI3K-AKT pathway regulates H3K56ac via the MDM2-dependent degradation of CREB-binding protein/p300. Taken together, the results of this study demonstrate that the Ras-PI3K signaling pathway targets specific epigenetic modifications in tumor cells.
Molecular and Cellular Biology | 2012
Su Chen; Da-Liang Wang; Yan Liu; Lei Zhao; Fang-Lin Sun
ABSTRACT Maintaining an appropriate cellular concentration of p53 is critical for cell survival and normal development in various organisms. In this study, we provide evidence that the human E2 ubiquitin-conjugating enzyme RAD6 plays a critical role in regulating p53 protein levels under both normal and stress conditions. Knockdown and overexpression of RAD6 affected p53 turnover and transcription. We showed that RAD6 can form a ternary complex with MDM2 and p53 that contributes to the degradation of p53. Chromatin immunoprecipitation (ChIP) analysis showed that RAD6 also binds to the promoter and coding regions of the p53 gene and modulates the levels of H3K4 and K79 methylation on local chromatin. When the cells were exposed to stress stimuli, the RAD6-MDM2-p53 ternary complex was disrupted; RAD6 was then recruited to the chromatin of the p53 gene, resulting in an increase in histone methylation and p53 transcription. Further studies showed that stress-induced p53 transcriptional activation, cell apoptosis, and disrupted cell cycle progression are all RAD6 dependent. Overall, this work demonstrates that RAD6 regulates p53 levels in a “yin-yang” manner through a combination of two distinct mechanisms in mammalian cells.
Journal of Cell Science | 2012
Wen-Wen Lv; Hui-Min Wei; Da-Liang Wang; Jian-Quan Ni; Fang-Lin Sun
Summary Core histone modifications play an important role in chromatin remodeling and transcriptional regulation. Histone acetylation is one of the best-studied gene modifications and has been shown to be involved in numerous important biological processes. Herein, we demonstrated that the depletion of histone deacetylase 3 (Hdac3) in Drosophila melanogaster resulted in a reduction in body size. Further genetic studies showed that Hdac3 counteracted the organ overgrowth induced by overexpression of insulin receptor (InR), phosphoinositide 3-kinase (PI3K) or S6 kinase (S6K), and the growth regulation by Hdac3 was mediated through the deacetylation of histone H4 at lysine 16 (H4K16). Consistently, the alterations of H4K16 acetylation (H4K16ac) induced by the overexpression or depletion of males-absent-on-the-first (MOF), a histone acetyltransferase that specifically targets H4K16, resulted in changes in body size. Furthermore, we found that H4K16ac was modulated by PI3K signaling cascades. The activation of the PI3K pathway caused a reduction in H4K16ac, whereas the inactivation of the PI3K pathway resulted in an increase in H4K16ac. The increase in H4K16ac by the depletion of Hdac3 counteracted the PI3K-induced tissue overgrowth and PI3K-mediated alterations in the transcription profile. Overall, our studies indicated that Hdac3 served as an important regulator of the PI3K pathway and revealed a novel link between histone acetylation and growth control.
Cell Research | 2012
Su Chen; Juan Li; Da-Liang Wang; Fang-Lin Sun
Histone H2B lysine 120 monoubiquitination is required for embryonic stem cell differentiation
Journal of Biological Chemistry | 2011
Su Chen; Hui-Min Wei; Wen-Wen Lv; Da-Liang Wang; Fang-Lin Sun
The turnover of tumor suppressor p53 is critical for its role in various cellular events. However, the pathway that regulates the turnover of the Drosophila melanogaster DMP53 is largely unknown. Here, we provide evidence for the first time that the E2 ligase, Drosophila homolog of Rad6 (dRad6/Dhr6), plays an important role in the regulation of DMP53 turnover. Depletion of dRad6 results in DMP53 accumulation, whereas overexpression of dRad6 causes enhanced DMP53 degradation. We show that dRad6 specifically interacts with DMP53 at the transcriptional activation domain and regulates DMP53 ubiquitination. Loss of dRad6 function in transgenic flies leads to lethalities and altered morphogenesis. The dRad6-induced defects in cell proliferation and apoptosis are found to be DMP53-dependent. The loss of dRad6 induces an accumulation of DMP53 that enhances the activation of apoptotic genes and leads to apoptosis in the presence of stress stimuli. In contrast to that, the E3 ligase is the primary factor that regulates p53 turnover in mammals, and this work demonstrates that the E2 ligase dRad6 is critical for the control of DMP53 degradation in Drosophila.
Chromosoma | 2011
Daoyong Zhang; Da-Liang Wang; Fang-Lin Sun
The condensed heterochromatic domains are known to be associated with transcriptional repression and cell differentiation. Here, we investigate the function of heterochromatin protein HP1b, a member of the HP1 family in Drosophila melanogaster, in transcription and development. Both knockdown and overexpression of HP1b resulted in partial lethality, indicating that HP1b is essential for the normal development. In contrast to the positive role of HP1a in heterochromatin formation, overexpression of HP1b decondensed the pericentromeric heterochromatin and reduced the association of HP1a and H3K9me2 with it, both known markers of pericentric heterochromatin. Interestingly, the structure of the heterochromatic fourth chromosome appeared not to be affected. Further experiments showed that the presence of HP1a partially rescued the lethality caused by HP1b overexpression in males, and it fully rescued the lethality in females. Consistent with this observation, the defective transcription of heterochromatic genes was also partially restored in the presence of HP1a. Overall, this study argues that HP1b counteracts HP1a function both in heterochromatin formation and in the transcriptional regulation of euchromatic genes.
Nature Communications | 2015
Jin Sun; Hui-Min Wei; Jiang Xu; Jian-Feng Chang; Zhihao Yang; Xingjie Ren; Wen-Wen Lv; Lu-Ping Liu; Lixia Pan; Xia Wang; Huan-Huan Qiao; Bing Zhu; Jun-Yuan Ji; Dong Yan; Ting Xie; Fang-Lin Sun; Jian-Quan Ni
Epigenetics plays critical roles in controlling stem cell self-renewal and differentiation. Histone H1 is one of the most critical chromatin regulators, but its role in adult stem cell regulation remains unclear. Here we report that H1 is intrinsically required in the regulation of germline stem cells (GSCs) in the Drosophila ovary. The loss of H1 from GSCs causes their premature differentiation through activation of the key GSC differentiation factor bam. Interestingly, the acetylated H4 lysine 16 (H4K16ac) is selectively augmented in the H1-depleted GSCs. Furthermore, overexpression of mof reduces H1 association on chromatin. In contrast, the knocking down of mof significantly rescues the GSC loss phenotype. Taken together, these results suggest that H1 functions intrinsically to promote GSC self-renewal by antagonizing MOF function. Since H1 and H4K16 acetylation are highly conserved from fly to human, the findings from this study might be applicable to stem cells in other systems.