Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel A. Dixon is active.

Publication


Featured researches published by Daniel A. Dixon.


Reviews of Geophysics | 2008

Ground-based measurements of spatial and temporal variability of snow accumulation in East Antarctica

Olaf Eisen; Massimo Frezzotti; Christophe Genthon; Elisabeth Isaksson; Olivier Magand; Michiel R. van den Broeke; Daniel A. Dixon; Alexey Ekaykin; Per Holmlund; Takao Kameda; Lars Karlöf; Susan Kaspari; Vladimir Ya. Lipenkov; Hans Oerter; Shuhei Takahashi; David G. Vaughan

The East Antarctic Ice Sheet is the largest, highest, coldest, driest, and windiest ice sheet on Earth. Understanding of the surface mass balance (SMB) of Antarctica is necessary to determine the present state of the ice sheet, to make predictions of its potential contribution to sea level rise, and to determine its past history for paleoclimatic reconstructions. However, SMB values are poorly known because of logistic constraints in extreme polar environments, and they represent one of the biggest challenges of Antarctic science. Snow accumulation is the most important parameter for the SMB of ice sheets. SMB varies on a number of scales, from small-scale features (sastrugi) to ice-sheet-scale SMB patterns determined mainly by temperature, elevation, distance from the coast, and wind-driven processes. In situ measurements of SMB are performed at single points by stakes, ultrasonic sounders, snow pits, and firn and ice cores and laterally by continuous measurements using ground-penetrating radar. SMB for large regions can only be achieved practically by using remote sensing and/or numerical climate modeling. However, these techniques rely on ground truthing to improve the resolution and accuracy. The separation of spatial and temporal variations of SMB in transient regimes is necessary for accurate interpretation of ice core records. In this review we provide an overview of the various measurement techniques, related difficulties, and limitations of data interpretation; describe spatial characteristics of East Antarctic SMB and issues related to the spatial and temporal representativity of measurements; and provide recommendations on how to perform in situ measurements.


Bulletin of the American Meteorological Society | 2016

The Amundsen Sea Low: Variability, Change, and Impact on Antarctic Climate

Marilyn N. Raphael; Gareth J. Marshall; John Turner; Ryan L. Fogt; David P. Schneider; Daniel A. Dixon; J. S. Hosking; Julie M. Jones; Will Hobbs

The Amundsen Sea Low (ASL) is a climatological low pressure center that exerts considerable influence on the climate of West Antarctica. Its potential to explain important recent changes in Antarctic climate, for example in temperature and sea ice extent, means that it has become the focus of an increasing number of studies. Here, we summarize current understanding of the ASL, using reanalysis datasets to analyze recent variability and trends, and ice-core chemistry and climate model projections to examine past and future changes in the ASL, respectively. The ASL has deepened in recent decades, affecting the climate through its influence on the regional meridional wind field, which controls the advection of moisture and heat into the continent. Deepening of the ASL in spring is consistent with observed West Antarctic warming and greater sea ice extent in the Ross Sea. Climate model simulations for recent decades indicate that this deepening is mediated by tropical variability while climate model projections through the 21st century suggest that the ASL will deepen in some seasons in response to greenhouse gas concentration increases.


Annals of Glaciology | 2004

Climate Variability in West Antarctica Derived from Annual Accumulation-Rate Records from ITASE Firn/Ice Cores

Susan Kaspari; Paul Andrew Mayewski; Daniel A. Dixon; Vandy Blue Spikes; Sharon B. Sneed; Michael Handley; Gordon S. Hamilton

Abstract Thirteen annually resolved accumulation-rate records covering the last ~200 years from the Pine Island–Thwaites and Ross drainage systems and the South Pole are used to examine climate variability over West Antarctica. Accumulation is controlled spatially by the topography of the ice sheet, and temporally by changes in moisture transport and cyclonic activity. A comparison of mean accumulation since 1970 at each site to the long-term mean indicates an increase in accumulation for sites located in the western sector of the Pine Island–Thwaites drainage system. Accumulation is negatively associated with the Southern Oscillation Index (SOI) for sites near the ice divide, and periods of sustained negative SOI (1940–42, 1991–95) correspond to above-mean accumulation at most sites. Correlations of the accumulation-rate records with sea-level pressure (SLP) and the SOI suggest that accumulation near the ice divide and in the Ross drainage system may be associated with the mid-latitudes. The post-1970 increase in accumulation coupled with strong SLP–accumulation-rate correlations near the coast suggests recent intensification of cyclonic activity in the Pine Island– Thwaites drainage system.


Annals of Glaciology | 2005

Snow Chemistry Across Antarctica

Nancy A. N. Bertler; Paul Andrew Mayewski; Alberto J. Aristarain; P. Barrett; S. Becagli; R. Bernardo; S. Bo; C. Xiao; M. Curran; D. Qin; Daniel A. Dixon; Francisco A. Ferron; Hubertus Fischer; Markus M. Frey; M. Frezzotti; F. Fundel; C. Genthon; Roberto Gragnani; Gordon S. Hamilton; M. Handley; Sungmin Hong; Elisabeth Isaksson; J.-H. Kang; J. Ren; K. Kamiyama; S. Kanamori; E. Karkas; L. Karlöf; Susan Kaspari; Karl J. Kreutz

Abstract An updated compilation of published and new data of major-ion (Ca, Cl, K, Mg, Na, NO3, SO4) and methylsulfonate (MS) concentrations in snow from 520 Antarctic sites is provided by the national ITASE (International Trans-Antarctic Scientific Expedition) programmes of Australia, Brazil, China, Germany, Italy, Japan, Korea, New Zealand, Norway, the United Kingdom, the United States and the national Antarctic programme of Finland. The comparison shows that snow chemistry concentrations vary by up to four orders of magnitude across Antarctica and exhibit distinct geographical patterns. The Antarctic-wide comparison of glaciochemical records provides a unique opportunity to improve our understanding of the fundamental factors that ultimately control the chemistry of snow or ice samples. This paper aims to initiate data compilation and administration in order to provide a framework for facilitation of Antarctic-wide snow chemistry discussions across all ITASE nations and other contributing groups. The data are made available through the ITASE web page (http://www2.umaine.edu/itase/content/syngroups/snowchem.html) and will be updated with new data as they are provided. In addition, recommendations for future research efforts are summarized.


Annals of Glaciology | 2005

High-resolution ice cores from US ITASE (West Antarctica): development and validation of chronologies and determination of precision and accuracy

Eric J. Steig; Paul Andrew Mayewski; Daniel A. Dixon; Susan Kaspari; Markus Michael Frey; David P. Schneider; Stephen A. Arcone; Gordon S. Hamilton; Vandy Blue Spikes; M. R. Albert; Deb Meese; Anthony J. Gow; Christopher A. Shuman; James W. C. White; Sharon Sneed; Joseph Flaherty; Mark Wumkes

Abstract Shallow ice cores were obtained from widely distributed sites across the West Antarctic ice sheet, as part of the United States portion of the International Trans-Antarctic Scientific Expedition (US ITASE) program. The US ITASE cores have been dated by annual-layer counting, primarily through the identification of summer peaks in non-sea-salt sulfate (nssSO4 2–) concentration. Absolute dating accuracy of better than 2 years and relative dating accuracy better than 1 year is demonstrated by the identification of multiple volcanic marker horizons in each of the cores, Tambora, Indonesia (1815), being the most prominent. Independent validation is provided by the tracing of isochronal layers from site to site using high-frequency ice-penetrating radar observations, and by the timing of mid-winter warming events in stable-isotope ratios, which demonstrate significantly better than 1 year accuracy in the last 20 years. Dating precision to ±1 month is demonstrated by the occurrence of summer nitrate peaks and stable-isotope ratios in phase with nssSO4 2–, and winter-time sea-salt peaks out of phase, with phase variation of <1 month. Dating precision and accuracy are uniform with depth, for at least the last 100 years.


Annals of Glaciology | 2004

A 200 year sub-annual record of sulfate in West Antarctica, from 16 ice cores

Daniel A. Dixon; Paul Andrew Mayewski; Susan Kaspari; Sharon Sneed; Mike Handley

Abstract Sixteen high-resolution ice-core records from West Antarctica and South Pole are used to examine the spatial and temporal distribution of sulfate for the last 200 years. The preservation of seasonal layers throughout the length of each record results in a dating accuracy of better than 1 year based on known global-scale volcanic events. A dual transport source for West Antarctic sea-salt (ss) SO4 2– and excess (xs) SO4 2– is observed: lower-tropospheric for areas below 1000m elevation and mid-/upper-tropospheric/stratospheric for areas located above 1000 m. Our xsSO4 2– records with volcanic peaks removed do not display any evidence of an anthropogenic impact on West Antarctic SO4 2– concentrations but do reveal that a major climate transition takes place over West Antarctica at ∼1940. Global-scale volcanic eruptions appear as significant peaks in the robust-spline residual xsSO4 2– records from sites located above 1000m elevation but do not appear in the residual records from sites located below 1000 m.


Annals of Glaciology | 2005

Solar forcing of the polar atmosphere

Paul Andrew Mayewski; Kirk A. Maasch; Yuping Yan; Shichang Kang; Eric A. Meyerson; Sharon B. Sneed; Susan Kaspari; Daniel A. Dixon; Erich C. Osterberg; Vin Morgan; Tas D. van Ommen; Mark A. J. Curran

Abstract We present highly resolved, annually dated, calibrated proxies for atmospheric circulation from several Antarctic ice cores (ITASE (International Trans-Antarctic Scientific Expedition), Siple Dome, Law Dome) that reveal decadal-scale associations with a South Pole ice-core 10Be proxy for solar variability over the last 600 years and annual-scale associations with solar variability since AD 1720. We show that increased (decreased) solar irradiance is associated with increased (decreased) zonal wind strength near the edge of the Antarctic polar vortex. The association is particularly strong in the Indian and Pacific Oceans and as such may contribute to understanding climate forcing that controls drought in Australia and other Southern Hemisphere climate events. We also include evidence suggestive of solar forcing of atmospheric circulation near the edge of the Arctic polar vortex based on ice-core records from Mount Logan, Yukon Territory, Canada, and both central and south Greenland as enticement for future investigations. Our identification of solar forcing of the polar atmosphere and its impact on lower latitudes offers a mechanism for better understanding modern climate variability and potentially the initiation of abrupt climate-change events that operate on decadal and faster scales.


Annals of Glaciology | 2005

A 200 Year Sulfate Record from Sixteen Antarctic Ice Cores and Associations With Southern Ocean Sea-Ice Extent

Daniel A. Dixon; Paul Andrew Mayewski; Susan Kaspari; Karl J. Kreutz; Gordon S. Hamilton; Kirk A. Maasch; Sharon B. Sneed; Michael Handley

Abstract Chemistry data from 16, 50–115m deep, sub-annually dated ice cores are used to investigate spatial and temporal concentration variability of sea-salt (ss) SO4 2– and excess (xs) SO4 2– over West Antarctica and the South Pole for the last 200 years. Low-elevation ice-core sites in western West Antarctica contain higher concentrations of SO4 2– as a result of cyclogenesis over the Ross Ice Shelf and proximity to the Ross Sea Polynya. Linear correlation analysis of 15 West Antarctic ice-core SO4 2– time series demonstrates that at several sites concentrations of ssSO4 2– are higher when sea-ice extent (SIE) is greater, and the inverse for xsSO4 2–. Concentrations of xsSO4 2– from the South Pole site (East Antarctica) are associated with SIE from the Weddell region, and West Antarctic xsSO4 2– concentrations are associated with SIE from the Bellingshausen–Amundsen–Ross region. The only notable rise of the last 200 years in xsSO4 2–, around 1940, is not related to SIE fluctuations and is most likely a result of increased xsSO4 2– production in the mid–low latitudes and/or an increase in transport efficiency from the mid–low latitudes to central West Antarctica. These high-resolution records show that the source types and source areas of ssSO4 2– and xsSO4 2– delivered to eastern and western West Antarctica and the South Pole differ from site to site but can best be resolved using records from spatial ice-core arrays such as the International Trans-Antarctic Scientific Expedition (ITASE).


Scientific Data | 2017

A global multiproxy database for temperature reconstructions of the Common Era

Julien Emile-Geay; Nicholas P. McKay; Darrell S. Kaufman; Lucien von Gunten; Jianghao Wang; Nerilie J. Abram; Jason A. Addison; Mark A. J. Curran; Michael N. Evans; Benjamin J. Henley; Zhixin Hao; Belen Martrat; Helen V. McGregor; Raphael Neukom; Gregory T. Pederson; Barbara Stenni; Kaustubh Thirumalai; Johannes P. Werner; Chenxi Xu; Dmitry Divine; Bronwyn C. Dixon; Joëlle Gergis; Ignacio A. Mundo; Takeshi Nakatsuka; Steven J. Phipps; Cody C. Routson; Eric J. Steig; Jessica E. Tierney; Jonathan J. Tyler; Kathryn Allen

Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850–2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.


Journal of Geophysical Research | 2015

Accelerated glacier melt on Snow Dome, Mount Olympus, Washington, USA, due to deposition of black carbon and mineral dust from wildfire

Susan Kaspari; S. McKenzie Skiles; Ian Delaney; Daniel A. Dixon; Thomas H. Painter

Assessing the potential for black carbon (BC) and dust deposition to reduce albedo and accelerate glacier melt is of interest in Washington because snow and glacier melt are an important source of water resources, and glaciers are retreating. In August 2012 on Snow Dome, Mount Olympus, Washington, we measured snow surface spectral albedo and collected surface snow samples and a 7 m ice core. The snow and ice samples were analyzed for iron (Fe, used as a dust proxy) via inductively coupled plasma sector field mass spectrometry, total impurity content gravimetrically, BC using a single-particle soot photometer (SP2), and charcoal through microscopy. In the 2012 summer surface snow, BC (54 ± 50 µg/L), Fe (367±236 µg/L) and gravimetric impurity (35 ± 18 mg/L) concentrations were spatially variable, and measured broadband albedo varied between 0.67–0.74. BC and dust concentrations in the ice core 2011 summer horizon were a magnitude higher (BC = 3120 µg/L, Fe = 22000 µg/L, and gravimetric impurity = 1870 mg/L), corresponding to a modeled broadband albedo of 0.45 based on the measured BC and gravimetric impurity concentrations. The Big Hump forest fire is the likely source for the higher concentrations. Modeling constrained by measurements indicates that the all-sky 12 h daily mean radiative forcings in summer 2012 and 2011 range between 37–53 W m−2 and 112–149 W m−2, respectively, with the greater forcings in 2011 corresponding to a 29–38 mm/d enhancement in snowmelt. The timing of the forest fire impurity deposition is coincident with an increase in observed discharge in the Hoh River, highlighting the potential for BC and dust deposition on glaciers from forest fires to accelerate melt.

Collaboration


Dive into the Daniel A. Dixon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Kaspari

Central Washington University

View shared research outputs
Top Co-Authors

Avatar

Eric J. Steig

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. J. Curran

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar

Alexey Ekaykin

Arctic and Antarctic Research Institute

View shared research outputs
Top Co-Authors

Avatar

Nancy A. N. Bertler

Victoria University of Wellington

View shared research outputs
Researchain Logo
Decentralizing Knowledge