Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel J. Burke is active.

Publication


Featured researches published by Daniel J. Burke.


Nature Biotechnology | 2002

Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae

Scott B. Ficarro; Mark L. McCleland; P. Todd Stukenberg; Daniel J. Burke; Mark M. Ross; Jeffrey Shabanowitz; Donald F. Hunt; Forest M. White

Protein kinases are coded by more than 2,000 genes and thus constitute the largest single enzyme family in the human genome. Most cellular processes are in fact regulated by the reversible phosphorylation of proteins on serine, threonine, and tyrosine residues. At least 30% of all proteins are thought to contain covalently bound phosphate. Despite the importance and widespread occurrence of this modification, identification of sites of protein phosphorylation is still a challenge, even when performed on highly purified protein. Reported here is methodology that should make it possible to characterize most, if not all, phosphoproteins from a whole-cell lysate in a single experiment. Proteins are digested with trypsin and the resulting peptides are then converted to methyl esters, enriched for phosphopeptides by immobilized metal-affinity chromatography (IMAC), and analyzed by nanoflow HPLC/electrospray ionization mass spectrometry. More than 1,000 phosphopeptides were detected when the methodology was applied to the analysis of a whole-cell lysate from Saccharomyces cerevisiae. A total of 216 peptide sequences defining 383 sites of phosphorylation were determined. Of these, 60 were singly phosphorylated, 145 doubly phosphorylated, and 11 triply phosphorylated. Comparison with the literature revealed that 18 of these sites were previously identified, including the doubly phosphorylated motif pTXpY derived from the activation loop of two mitogen-activated protein (MAP) kinases. We note that the methodology can easily be extended to display and quantify differential expression of phosphoproteins in two different cell systems, and therefore demonstrates an approach for “phosphoprofiling” as a measure of cellular states.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry

An Chi; Curtis Huttenhower; Lewis Y. Geer; Joshua J. Coon; John E. P. Syka; Dina L. Bai; Jeffrey Shabanowitz; Daniel J. Burke; Olga G. Troyanskaya; Donald F. Hunt

We present a strategy for the analysis of the yeast phosphoproteome that uses endo-Lys C as the proteolytic enzyme, immobilized metal affinity chromatography for phosphopeptide enrichment, a 90-min nanoflow-HPLC/electrospray-ionization MS/MS experiment for phosphopeptide fractionation and detection, gas phase ion/ion chemistry, electron transfer dissociation for peptide fragmentation, and the Open Mass Spectrometry Search Algorithm for phosphoprotein identification and assignment of phosphorylation sites. From a 30-μg (≈600 pmol) sample of total yeast protein, we identify 1,252 phosphorylation sites on 629 proteins. Identified phosphoproteins have expression levels that range from <50 to 1,200,000 copies per cell and are encoded by genes involved in a wide variety of cellular processes. We identify a consensus site that likely represents a motif for one or more uncharacterized kinases and show that yeast kinases, themselves, contain a disproportionately large number of phosphorylation sites. Detection of a pHis containing peptide from the yeast protein, Cdc10, suggests an unexpected role for histidine phosphorylation in septin biology. From diverse functional genomics data, we show that phosphoproteins have a higher number of interactions than an average protein and interact with each other more than with a random protein. They are also likely to be conserved across large evolutionary distances.


Molecular and Cellular Biology | 1997

Cdc55p, the B-type regulatory subunit of protein phosphatase 2A, has multiple functions in mitosis and is required for the kinetochore/spindle checkpoint in Saccharomyces cerevisiae.

Yanchang Wang; Daniel J. Burke

Saccharomyces cerevisiae, like most eucaryotic cells, can prevent the onset of anaphase until chromosomes are properly aligned on the mitotic spindle. We determined that Cdc55p (regulatory B subunit of protein phosphatase 2A [PP2A]) is required for the kinetochore/spindle checkpoint regulatory pathway in yeast. ctf13 cdc55 double mutants could not maintain a ctf13-induced mitotic delay, as determined by antitubulin staining and levels of histone H1 kinase activity. In addition, cdc55::LEU2 mutants and tpd3::LEU2 mutants (regulatory A subunit of PP2A) were nocodazole sensitive and exhibited the phenotypes of previously identified kinetochore/spindle checkpoint mutants. Inactivating CDC55 did not simply bypass the arrest that results from inhibiting ubiquitin-dependent proteolysis because cdc16-1 cdc55::LEU2 and cdc23-1 cdc55::LEU2 double mutants arrested normally at elevated temperatures. CDC55 is specific for the kinetochore/spindle checkpoint because cdc55 mutants showed normal sensitivity to gamma radiation and hydroxyurea. The conditional lethality and the abnormal cellular morphogenesis of cdc55::LEU2 were suppressed by cdc28F19, suggesting that the cdc55 phenotypes are dependent on the phosphorylation state of Cdc28p. In contrast, the nocodazole sensitivity of cdc55::LEU2 was not suppressed by cdc28F19. Therefore, the mitotic checkpoint activity of CDC55 (and TPD3) is independent of regulated phosphorylation of Cdc28p. Finally, cdc55::LEU2 suppresses the temperature sensitivity of cdc20-1, suggesting additional roles for CDC55 in mitosis.


Molecular and Cellular Biology | 1995

Checkpoint genes required to delay cell division in response to nocodazole respond to impaired kinetochore function in the yeast Saccharomyces cerevisiae.

Yanchang Wang; Daniel J. Burke

Inhibition of mitosis by antimitotic drugs is thought to occur by destruction of microtubules, causing cells to arrest through the action of one or more mitotic checkpoints. We have patterned experiments in the yeast Saccharomyces cerevisiae after recent studies in mammalian cells that demonstrate the effectiveness of antimitotic drugs at concentrations that maintain spindle structure. We show that low concentrations of nocodazole delay cell division under the control of the previously identified mitotic checkpoint genes BUB1, BUB3, MAD1, and MAD2 and independently of BUB2. The same genes mediate the cell cycle delay induced in ctf13 mutants, limited for an essential kinetochore component. Our data suggest that a low concentration of nocodazole induces a cell cycle delay through checkpoint control that is sensitive to impaired kinetochore function. The BUB2 gene may be part of a separate checkpoint that responds to abnormal spindle structure.


Molecular and Cellular Biology | 1991

The CDC20 gene product of Saccharomyces cerevisiae, a beta-transducin homolog, is required for a subset of microtubule-dependent cellular processes.

N Sethi; M C Monteagudo; D Koshland; E Hogan; Daniel J. Burke

Previous analysis of cdc20 mutants of the yeast Saccharomyces cerevisiae suggests that the CDC20 gene product (Cdc20p) is required for two microtubule-dependent processes, nuclear movements prior to anaphase and chromosome separation. Here we report that cdc20 mutants are defective for a third microtubule-mediated event, nuclear fusion during mating of G1 cells, but appear normal for a fourth microtubule-dependent process, nuclear migration after DNA replication. Therefore, Cdc20p is required for a subset of microtubule-dependent processes and functions at multiple stages in the life cycle. Consistent with this interpretation, we find that cdc20 cells arrested by alpha-factor or at the restrictive temperature accumulate anomalous microtubule structures, as detected by indirect immunofluorescence. The anomalous microtubule staining patterns are due to cdc20 because intragenic revertants that revert the temperature sensitivity have normal microtubule morphologies. cdc20 mutants have a sevenfold increase in the intensity of antitubulin fluorescence in intranuclear spindles compared with spindles from wild-type cells, yet the total amount of tubulin is indistinguishable by Western immunoblot analysis. This result suggests that Cdc20p modulates microtubule structure in wild-type cells either by promoting microtubule disassembly or by altering the surface of the microtubules. Finally, we cloned and sequenced CDC20 and show that it encodes a member of a family of proteins that share homology to the beta subunit of transducin.


Molecular and Cellular Biology | 1991

Protein synthesis requirements for nuclear division, cytokinesis, and cell separation in Saccharomyces cerevisiae.

Daniel J. Burke; D Church

Protein synthesis inhibitors have often been used to identify regulatory steps in cell division. We used cell division cycle mutants of the yeast Saccharomyces cerevisiae and two chemical inhibitors of translation to investigate the requirements for protein synthesis for completing landmark events after the G1 phase of the cell cycle. We show, using cdc2, cdc6, cdc7, cdc8, cdc17 (38 degrees C), and cdc21 (also named tmp1) mutants, that cells arrested in S phase complete DNA synthesis but cannot complete nuclear division if protein synthesis is inhibited. In contrast, we show, using cdc16, cdc17 (36 degrees C), cdc20, cdc23, and nocodazole treatment, that cells that arrest in the G2 stage complete nuclear division in the absence of protein synthesis. Protein synthesis is required late in the cell cycle to complete cytokinesis and cell separation. These studies show that there are requirements for protein synthesis in the cell cycle, after G1, that are restricted to two discrete intervals.


Molecular and Cellular Biology | 1992

A delay in the Saccharomyces cerevisiae cell cycle that is induced by a dicentric chromosome and dependent upon mitotic checkpoints.

M W Neff; Daniel J. Burke

Dicentric chromosomes are genetically unstable and depress the rate of cell division in Saccharomyces cerevisiae. We have characterized the effects of a conditionally dicentric chromosome on the cell division cycle by using microscopy, flow cytometry, and an assay for histone H1 kinase activity. Activating the dicentric chromosome induced a delay in the cell cycle after DNA replication and before anaphase. The delay occurred in the absence of RAD9, a gene required to arrest cell division in response to DNA damage. The rate of dicentric chromosome loss, however, was elevated in the rad9 mutant. A mutation in BUB2, a gene required for arrest of cell division in response to loss of microtubule function, diminished the delay. Both RAD9 and BUB2 appear to be involved in the cellular response to a dicentric chromosome, since the conditionally dicentric rad9 bub2 double mutant was highly inviable. We conclude that a dicentric chromosome results in chromosome breakage and spindle aberrations prior to nuclear division that normally activate mitotic checkpoints, thereby delaying the onset of anaphase.


Cell | 2008

The Immortal Strand Hypothesis: How Could It Work?

Daniel J. Lew; Daniel J. Burke; Anindya Dutta

The “immortal strand” hypothesis was proposed by John Cairns as a strategy for stem cells to avoid retaining mutations introduced during DNA replication (Cairns, 1975). The hypothesis holds that when stem cells undergo asymmetric cell division, one daughter (the self-renewing stem cell) selectively retains the older template DNA strand from each chromosome. Recent successes in detecting nonrandom sister chromatid segregation in various types of stem cells have rekindled interest in the hypothesis.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Pmr1, a Golgi Ca2+/Mn2+-ATPase, is a regulator of the target of rapamycin (TOR) signaling pathway in yeast

Gina Devasahayam; Danilo Ritz; Stephen B. Helliwell; Daniel J. Burke; Thomas W. Sturgill

The rapamycin·FKBP12 complex inhibits target of rapamycin (TOR) kinase in TORC1. We screened the yeast nonessential gene deletion collection to identify mutants that conferred rapamycin resistance, and we identified PMR1, encoding the Golgi Ca2+/Mn2+-ATPase. Deleting PMR1 in two genetic backgrounds confers rapamycin resistance. Epistasis analyses show that Pmr1 functions upstream from Npr1 and Gln-3 in opposition to Lst8, a regulator of TOR. Npr1 kinase is largely cytoplasmic, and a portion localizes to the Golgi where amino acid permeases are modified and sorted. Nuclear translocation of Gln-3 and Gln-3 reporter activity in pmr1 cells are impaired, but expression of functional Gap1 in the plasma membrane of a pmr1 strain in response to nitrogen limitation is enhanced. These two phenotypes suggest up-regulation of Npr1 function in the absence of Pmr1. Together, our results establish that Pmr1-dependent Ca2+ and/or Mn2+ ion homeostasis is necessary for TOR signaling.


Molecular and Cellular Biology | 1997

Differential requirements for DNA replication in the activation of mitotic checkpoints in Saccharomyces cerevisiae.

Penny A. Tavormina; Yanchang Wang; Daniel J. Burke

Checkpoints prevent inaccurate chromosome segregation by inhibiting cell division when errors in mitotic processes are encountered. We used a temperature-sensitive mutation, dbf4, to examine the requirement for DNA replication in establishing mitotic checkpoint arrest. We used gamma-irradiation to induce DNA damage and hydroxyurea to limit deoxyribonucleotides in cells deprived of DBF4 function to investigate the requirement for DNA replication in DNA-responsive checkpoints. In the absence of DNA replication, mitosis was not inhibited by these treatments, which normally activate the DNA damage and DNA replication checkpoints. Our results support a model that indicates that the assembly of replication structures is critical for cells to respond to defects in DNA metabolism. We show that activating the spindle checkpoint with nocodazole does not require prior progression through S phase but does require a stable kinetochore.

Collaboration


Dive into the Daniel J. Burke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanchang Wang

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary J. Gorbsky

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Daum

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Mark M. Ross

United States Naval Research Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge