Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gennifer Merrihew is active.

Publication


Featured researches published by Gennifer Merrihew.


Proceedings of the National Academy of Sciences of the United States of America | 2013

The PINK1–Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo

Evelyn S. Vincow; Gennifer Merrihew; Ruth E. Thomas; Nicholas J. Shulman; Richard P. Beyer; Michael J. MacCoss; Leo J. Pallanck

The accumulation of damaged mitochondria has been proposed as a key factor in aging and the pathogenesis of many common age-related diseases, including Parkinson disease (PD). Recently, in vitro studies of the PD-related proteins Parkin and PINK1 have found that these factors act in a common pathway to promote the selective autophagic degradation of damaged mitochondria (mitophagy). However, whether Parkin and PINK1 promote mitophagy under normal physiological conditions in vivo is unknown. To address this question, we used a proteomic approach in Drosophila to compare the rates of mitochondrial protein turnover in parkin mutants, PINK1 mutants, and control flies. We found that parkin null mutants showed a significant overall slowing of mitochondrial protein turnover, similar to but less severe than the slowing seen in autophagy-deficient Atg7 mutants, consistent with the model that Parkin acts upstream of Atg7 to promote mitophagy. By contrast, the turnover of many mitochondrial respiratory chain (RC) subunits showed greater impairment in parkin than Atg7 mutants, and RC turnover was also selectively impaired in PINK1 mutants. Our findings show that the PINK1–Parkin pathway promotes mitophagy in vivo and, unexpectedly, also promotes selective turnover of mitochondrial RC subunits. Failure to degrade damaged RC proteins could account for the RC deficits seen in many PD patients and may play an important role in PD pathogenesis.


Nature Methods | 2013

Multiplexed MS/MS for improved data-independent acquisition

Andreas Kuehn; Gennifer Merrihew; Nicholas W. Bateman; Brendan MacLean; Ying S Ting; Jesse D. Canterbury; Donald M Marsh; Markus Kellmann; Christine C. Wu; Michael J. MacCoss

In mass spectrometry–based proteomics, data-independent acquisition (DIA) strategies can acquire a single data set useful for both identification and quantification of detectable peptides in a complex mixture. However, DIA data are noisy owing to a typical five- to tenfold reduction in precursor selectivity compared to data obtained with data-dependent acquisition or selected reaction monitoring. We demonstrate a multiplexing strategy, MSX, for DIA analysis that increases precursor selectivity fivefold.


Nature | 2014

Comparative analysis of the transcriptome across distant species.

Mark Gerstein; Joel Rozowsky; Koon Kiu Yan; Daifeng Wang; Chao Cheng; James B. Brown; Carrie A. Davis; LaDeana W. Hillier; Cristina Sisu; Jingyi Jessica Li; Baikang Pei; Arif Harmanci; Michael O. Duff; Sarah Djebali; Roger P. Alexander; Burak H. Alver; Raymond K. Auerbach; Kimberly Bell; Peter J. Bickel; Max E. Boeck; Nathan Boley; Benjamin W. Booth; Lucy Cherbas; Peter Cherbas; Chao Di; Alexander Dobin; Jorg Drenkow; Brent Ewing; Gang Fang; Megan Fastuca

The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a ‘universal model’ based on a single set of organism-independent parameters.


Journal of Proteome Research | 2009

Expediting the Development of Targeted SRM Assays: Using Data from Shotgun Proteomics to Automate Method Development

Amol Prakash; Daniela M. Tomazela; Barbara Frewen; Brendan MacLean; Gennifer Merrihew; Scott Peterman; Michael J. MacCoss

Selected reaction monitoring (SRM) is a powerful tandem mass spectrometry method that can be used to monitor target peptides within a complex protein digest. The specificity and sensitivity of the approach, as well as its capability to multiplex the measurement of many analytes in parallel, has made it a technology of particular promise for hypothesis driven proteomics. An underappreciated step in the development of an assay to measure many peptides in parallel is the time and effort necessary to establish a usable assay. Here we report the use of shotgun proteomics data to expedite the selection of SRM transitions for target peptides of interest. The use of tandem mass spectrometry data acquired on an LTQ ion trap mass spectrometer can accurately predict which fragment ions will produce the greatest signal in an SRM assay using a triple quadrupole mass spectrometer. Furthermore, we present a scoring routine that can compare the targeted SRM chromatogram data with an MS/MS spectrum acquired by data-dependent acquisition and stored in a library. This scoring routine is invaluable in determining which signal in the chromatogram from a complex mixture best represents the target peptide. These algorithmic developments have been implemented in a software package that is available from the authors upon request.


Analytical Chemistry | 2009

Dual-pressure linear ion trap mass spectrometer improving the analysis of complex protein mixtures.

Tonya Second; Justin Blethrow; Jae C. Schwartz; Gennifer Merrihew; Michael J. MacCoss; Danielle L. Swaney; Jason D. Russell; Joshua J. Coon

The considerable progress in high-throughput proteomics analysis via liquid chromatography-electrospray ionization-tandem mass spectrometry over the past decade has been fueled to a large degree by continuous improvements in instrumentation. High-throughput identification experiments are based on peptide sequencing and are largely accomplished through the use of tandem mass spectrometry, with ion trap and trap-based instruments having become broadly adopted analytical platforms. To satisfy increasingly demanding requirements for depth of characterization and throughput, we present a newly developed dual-pressure linear ion trap mass spectrometer (LTQ Velos) that features increased sensitivity, afforded by a new source design, and demonstrates practical cycle times 2 times shorter than that of an LTQ XL, while improving or maintaining spectral quality for MS/MS fragmentation spectra. These improvements resulted in a substantial increase in the detection and identification of both proteins and unique peptides from the complex proteome of Caenorhabditis elegans, as compared to existing platforms. The greatly increased ion flux into the mass spectrometer in combination with improved isolation of low-abundance precursor ions resulted in increased detection of low-abundance peptides. These improvements cumulatively resulted in a substantially greater penetration into the bakers yeast (Saccharomyces cerevisiae) proteome compared to LTQ XL. Alternatively, faster cycle times on the new instrument allowed for higher throughput for a given depth of proteome analysis, with more peptides and proteins identified in 60 min using an LTQ Velos than in 180 min using an LTQ XL. When mass analysis was carried out with resolution in excess of 25,000 full width at half-maximum (fwhm), it became possible to isotopically resolve a small intact protein and its fragments, opening possibilities for top down experiments.


Genome Research | 2013

Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast

Daniel A. Skelly; Gennifer Merrihew; Michael Riffle; Caitlin F. Connelly; Emily O. Kerr; Marnie Johansson; Daniel Jaschob; Beth Graczyk; Nicholas J. Shulman; Jon Wakefield; Sara J. Cooper; Stanley Fields; William Stafford Noble; Eric G D Muller; Trisha N. Davis; Maitreya J. Dunham; Michael J. MacCoss; Joshua M. Akey

To better understand the quantitative characteristics and structure of phenotypic diversity, we measured over 14,000 transcript, protein, metabolite, and morphological traits in 22 genetically diverse strains of Saccharomyces cerevisiae. More than 50% of all measured traits varied significantly across strains [false discovery rate (FDR) = 5%]. The structure of phenotypic correlations is complex, with 85% of all traits significantly correlated with at least one other phenotype (median = 6, maximum = 328). We show how high-dimensional molecular phenomics data sets can be leveraged to accurately predict phenotypic variation between strains, often with greater precision than afforded by DNA sequence information alone. These results provide new insights into the spectrum and structure of phenotypic diversity and the characteristics influencing the ability to accurately predict phenotypes.


Analytical Chemistry | 2010

Deconvolution of mixture spectra from ion-trap data-independent-acquisition tandem mass spectrometry

Marshall W. Bern; Gregory L. Finney; Michael R. Hoopmann; Gennifer Merrihew; Michael J. Toth; Michael J. MacCoss

Data-independent tandem mass spectrometry isolates and fragments all of the molecular species within a given mass-to-charge window, regardless of whether a precursor ion was detected within the window. For shotgun proteomics on complex protein mixtures, data-independent MS/MS offers certain advantages over the traditional data-dependent MS/MS: identification of low-abundance peptides with insignificant precursor peaks, more direct relative quantification, free of biases caused by competing precursors and dynamic exclusion, and faster throughput due to simultaneous fragmentation of multiple peptides. However, data-independent MS/MS, especially on low-resolution ion-trap instruments, strains standard peptide identification programs, because of less precise knowledge of the peptide precursor mass and large numbers of spectra composed of two or more peptides. Here we describe a computer program called DeMux that deconvolves mixture spectra and improves the peptide identification rate by approximately 25%. We compare the number of identifications made by data-independent and data-dependent MS/MS at the peptide and protein levels: conventional data-dependent MS/MS makes a greater number of identifications but is less reproducible from run to run.


Journal of Proteome Research | 2014

Proteogenomic Database Construction Driven from Large Scale RNA-seq Data

Sunghee Woo; Seong Won Cha; Gennifer Merrihew; Yupeng He; Natalie E. Castellana; Clark C. Guest; Michael J. MacCoss; Vineet Bafna

The advent of inexpensive RNA-seq technologies and other deep sequencing technologies for RNA has the promise to radically improve genomic annotation, providing information on transcribed regions and splicing events in a variety of cellular conditions. Using MS-based proteogenomics, many of these events can be confirmed directly at the protein level. However, the integration of large amounts of redundant RNA-seq data and mass spectrometry data poses a challenging problem. Our paper addresses this by construction of a compact database that contains all useful information expressed in RNA-seq reads. Applying our method to cumulative C. elegans data reduced 496.2 GB of aligned RNA-seq SAM files to 410 MB of splice graph database written in FASTA format. This corresponds to 1000× compression of data size, without loss of sensitivity. We performed a proteogenomics study using the custom data set, using a completely automated pipeline, and identified a total of 4044 novel events, including 215 novel genes, 808 novel exons, 12 alternative splicings, 618 gene-boundary corrections, 245 exon-boundary changes, 938 frame shifts, 1166 reverse strands, and 42 translated UTRs. Our results highlight the usefulness of transcript + proteomic integration for improved genome annotations.


Genome Research | 2008

Use of shotgun proteomics for the identification, confirmation, and correction of C. elegans gene annotations

Gennifer Merrihew; Colleen Davis; Brent Ewing; Gary Williams; Lukas Käll; Barbara Frewen; William Stafford Noble; Phil Green; James H. Thomas; Michael J. MacCoss

We describe a general mass spectrometry-based approach for gene annotation of any organism and demonstrate its effectiveness using the nematode Caenorhabditis elegans. We detected 6779 C. elegans proteins (67,047 peptides), including 384 that, although annotated in WormBase WS150, lacked cDNA or other prior experimental support. We also identified 429 new coding sequences that were unannotated in WS150. Nearly half (192/429) of the new coding sequences were confirmed with RT-PCR data. Thirty-three (approximately 8%) of the new coding sequences had been predicted to be pseudogenes, 151 (approximately 35%) reveal apparent errors in gene models, and 245 (57%) appear to be novel genes. In addition, we verified 6010 exon-exon splice junctions within existing WormBase gene models. Our work confirms that mass spectrometry is a powerful experimental tool for annotating sequenced genomes. In addition, the collection of identified peptides should facilitate future proteomics experiments targeted at specific proteins of interest.


Journal of Proteome Research | 2009

Post analysis data acquisition for the iterative MS/MS sampling of proteomics mixtures

Michael R. Hoopmann; Gennifer Merrihew; Priska D. von Haller; Michael J. MacCoss

The identification of peptides by microcapillary liquid chromatography-tandem mass spectrometry (microLC-MS/MS) has become routine because of the development of fast scanning mass spectrometers, data-dependent acquisition, and database searching algorithms. However, many peptides within the detection limit of the mass spectrometer remain unidentified because of limitations in MS/MS sampling speed despite the dynamic range and peak capacity of the instrument. We have developed an automated approach that uses the mass spectra from high resolution microLC-MS data to define the molecular species present in the mixture and directs the acquisition of MS/MS spectra to precursors that were missed in prior analyses. This approach increases the coverage of the molecular species sampled by MS/MS and consequently the number of peptides and proteins identified during the acquisition of technical or biological replicates using a simple one-dimensional chromatographic separation. The combination of a unique workflow and custom software contribute to the improved identification of molecular features detected in proteomics experiments of complex protein mixtures.

Collaboration


Dive into the Gennifer Merrihew's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara Frewen

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Jaschob

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leo J. Pallanck

University of Washington Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael Riffle

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge