Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Van Schaeybroeck is active.

Publication


Featured researches published by Sandra Van Schaeybroeck.


Molecular Cancer Therapeutics | 2006

Chemotherapy-induced epidermal growth factor receptor activation determines response to combined gefitinib/chemotherapy treatment in non-small cell lung cancer cells.

Sandra Van Schaeybroeck; Joan Kyula; Donal M. Kelly; Anthi Karaiskou-McCaul; Susan Stokesberry; Eric Van Cutsem; Daniel B. Longley; Patrick G. Johnston

Activating epidermal growth factor receptor (EGFR) mutations have been linked with sensitivity to gefitinib and erlotinib; however, there are no established predictive markers for response to the combination of EGFR inhibitors with standard chemotherapy in non–small cell lung cancer (NSCLC) patients. In this study, we characterized a panel of human EGFR wild-type and mutant NSCLC cells for their sensitivity to gefitinib alone and in combination with cisplatin or Taxol. Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and crystal violet cell viability assays. Cell cycle distribution was measured by flow cytometry. EGFR expression was measured by flow cytometry, real-time PCR, and Western blotting. EGFR/Her2/Akt and extracellular signal-regulated kinase 1/2 (Erk1/2) phosphorylation were measured by Western blotting. Two of nine EGFR wild type and one of two EGFR mutant NSCLC cells were sensitive to gefitinib, and this was associated with a decrease in phospho (p)–Akt and pErk1/2 following gefitinib exposure. There was no correlation between constitutive EGFR expression or activity and sensitivity to gefitinib nor was there a correlation between Her2/Akt and Erk1/2 activity and gefitinib sensitivity. However, in cells displaying a synergistic interaction between gefitinib and chemotherapy (cisplatin or Taxol), a dose-dependent increase in pEGFR was observed following chemotherapy exposure. In contrast, in cells where no change or a decrease in pEGFR following drug treatment was observed, we found an antagonistic or (at best) an additive interaction between the two compounds. Furthermore, the nature of this interaction was not dependent on the presence of a mutant EGFR. These novel findings suggest that modulation of EGFR activity following drug treatment determines response to gefitinib in combination with chemotherapy in NSCLC cells. [Mol Cancer Ther 2006;5(5):1154–65]


Clinical Cancer Research | 2005

Epidermal growth factor receptor activity determines response of colorectal cancer cells to gefitinib alone and in combination with chemotherapy.

Sandra Van Schaeybroeck; Anthi Karaiskou-McCaul; Donal M. Kelly; Daniel B. Longley; Leeona Galligan; Eric Van Cutsem; Patrick G. Johnston

Purpose: Up to now, there have been no established predictive markers for response to epidermal growth factor receptor (EGFR/HER1/erbB1) inhibitors alone and in combination with chemotherapy in colorectal cancer. To identify markers that predict response to EGFR-based chemotherapy regimens, we analyzed the response of human colorectal cancer cell lines to the EGFR-tyrosine kinase inhibitor, gefitinib (Iressa, AstraZeneca, Wilmington, DE), as a single agent and in combination with oxaliplatin and 5-fluorouracil (5-FU). Experimental Design: Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and crystal violet cell viability assays and analyzed by ANOVA. Apoptosis was measured by flow cytometry, poly(ADP-ribose) polymerase, and caspase 3 cleavage. EGFR protein phosphorylation was detected by Western blotting. Results: Cell lines displaying high constitutive EGFR phosphorylation (a surrogate marker for EGFR activity) were more sensitive to gefitinib. Furthermore, in cell lines exhibiting low constitutive EGFR phosphorylation, an antagonistic interaction between gefitinib and oxaliplatin was observed, whereas in cell lines with high basal EGFR phosphorylation, the interaction was synergistic. In addition, oxaliplatin treatment increased EGFR phosphorylation in those cell lines in which oxaliplatin and gefitinib were synergistic but down-regulated EGFR phosphorylation in those lines in which oxaliplatin and gefitinib were antagonistic. In contrast to oxaliplatin, 5-FU treatment increased EGFR phosphorylation in all cell lines and this correlated with synergistic decreases in cell viability when 5-FU was combined with gefitinib. Conclusions: These results suggest that phospho-EGFR levels determine the sensitivity of colorectal cancer cells to gefitinib alone and that chemotherapy-mediated changes in phospho-EGFR levels determine the nature of interaction between gefitinib and chemotherapy.


Nature Reviews Clinical Oncology | 2011

Implementing prognostic and predictive biomarkers in CRC clinical trials.

Sandra Van Schaeybroeck; Wendy L. Allen; Richard Turkington; Patrick G. Johnston

Over the past two decades, several protein and genomic markers have refined the prognostic information of colorectal cancer (CRC) and helped to predict which patient group may benefit most from systemic treatment or targeted therapies. Of all these markers, KRAS represents the first biomarker integrated into clinical practice for CRC. Microarray-based gene-expression profiling has been used to identify prognostic signatures and to a lesser degree predictive signatures in CRC; however, common challenges with these types of studies are clinical study design, reproducibility, interpretation and reporting of the results. We focus on the clinical application of a range of published prognostic and predictive protein and genomic markers in CRC and discuss the different challenges associated with microarray-based gene-expression profiling. While none of these genomic signatures is currently in routine clinical use in CRC, novel adaptive clinical trial designs that incorporate putative genomic prognostic/predictive markers in prospective randomized trials, will enable a clinical validation of these markers and may facilitate the implementation of these biomarkers into routine medical practice.


Clinical Cancer Research | 2010

Chemotherapy-induced activation of ADAM-17: a novel mechanism of drug resistance in colorectal cancer

Joan Kyula; Sandra Van Schaeybroeck; Joanne Doherty; Catherine S. Fenning; Daniel B. Longley; Patrick G. Johnston

Purpose: We have shown previously that exposure to anticancer drugs can trigger the activation of human epidermal receptor survival pathways in colorectal cancer (CRC). In this study, we examined the role of ADAMs (a disintegrin and metalloproteinases) and soluble growth factors in this acute drug resistance mechanism. Experimental Design: In vitro and in vivo models of CRC were assessed. ADAM-17 activity was measured using a fluorometric assay. Ligand shedding was assessed by ELISA or Western blotting. Apoptosis was assessed by flow cytometry and Western blotting. Results: Chemotherapy (5-fluorouracil) treatment resulted in acute increases in transforming growth factor-α, amphiregulin, and heregulin ligand shedding in vitro and in vivo that correlated with significantly increased ADAM-17 activity. Small interfering RNA–mediated silencing and pharmacologic inhibition confirmed that ADAM-17 was the principal ADAM involved in this prosurvival response. Furthermore, overexpression of ADAM-17 significantly decreased the effect of chemotherapy on tumor growth and apoptosis. Mechanistically, we found that ADAM-17 not only regulated phosphorylation of human epidermal receptors but also increased the activity of a number of other growth factor receptors, such as insulin-like growth factor-I receptor and vascular endothelial growth factor receptor. Conclusions: Chemotherapy acutely activates ADAM-17, which results in growth factor shedding, growth factor receptor activation, and drug resistance in CRC tumors. Thus, pharmacologic inhibition of ADAM-17 in conjunction with chemotherapy may have therapeutic potential for the treatment of CRC. Clin Cancer Res; 16(13); 3378–89. ©2010 AACR.


Clinical Cancer Research | 2010

Prognostic Significance of TRAIL Signaling Molecules in Stage II and III Colorectal Cancer

Donal P. McLornan; Helen L. Barrett; Robert Cummins; Ultan McDermott; Cliona McDowell; Susie J. Conlon; Victoria Coyle; Sandra Van Schaeybroeck; Richard Wilson; Elaine Kay; Daniel B. Longley; Patrick G. Johnston

Purpose: We previously found that cellular FLICE-inhibitory protein (c-FLIP), caspase 8, and tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) receptor 2 (DR5) are major regulators of cell viability and chemotherapy-induced apoptosis in colorectal cancer. In this study, we determined the prognostic significance of c-FLIP, caspase 8, TRAIL and DR5 expression in tissues from patients with stage II and III colorectal cancer. Experimental Design: Tissue microarrays were constructed from matched normal and tumor tissue derived from patients (n = 253) enrolled in a phase III trial of adjuvant 5-fluorouracil–based chemotherapy versus postoperative observation alone. TRAIL, DR5, caspase 8, and c-FLIP expression levels were determined by immunohistochemistry. Results: Colorectal tumors displayed significantly higher expression levels of c-FLIP (P < 0.001), caspase 8 (P = 0.01), and DR5 (P < 0.001), but lower levels of TRAIL (P < 0.001) compared with matched normal tissue. In univariate analysis, higher TRAIL expression in the tumor was associated with worse overall survival (P = 0.026), with a trend to decreased relapse-free survival (RFS; P = 0.06), and higher tumor c-FLIP expression was associated with a significantly decreased RFS (P = 0.015). Using multivariate predictive modeling for RFS in all patients and including all biomarkers, age, treatment, and stage, we found that the model was significant when the mean tumor c-FLIP expression score and disease stage were included (P < 0.001). As regards overall survival, the overall model was predictive when both TRAIL expression and disease stage were included (P < 0.001). Conclusions: High c-FLIP and TRAIL expression may be independent adverse prognostic markers in stage II and III colorectal cancer and might identify patients most at risk of relapse. Clin Cancer Res; 16(13); 3442–51. ©2010 AACR.


Clinical Cancer Research | 2014

AXL Is a Key Regulator of Inherent and Chemotherapy-Induced Invasion and Predicts a Poor Clinical Outcome in Early-Stage Colon Cancer

Philip D. Dunne; Darragh G. McArt; Jaine K. Blayney; Murugan Kalimutho; Samanda Greer; Tingting Wang; Supriya Srivastava; Chee Wee Ong; Kenneth Arthur; Maurice B. Loughrey; Keara Redmond; Daniel B. Longley; Manuel Salto-Tellez; Patrick G. Johnston; Sandra Van Schaeybroeck

Purpose: Despite the use of 5-fluorouracil (5-FU)–based adjuvant treatments, a large proportion of patients with high-risk stage II/III colorectal cancer will relapse. Thus, novel therapeutic strategies are needed for early-stage colorectal cancer. Residual micrometastatic disease from the primary tumor is a major cause of patient relapse. Experimental Design: To model colorectal cancer tumor cell invasion/metastasis, we have generated invasive (KRASMT/KRASWT/+chr3/p53-null) colorectal cancer cell subpopulations. Receptor tyrosine kinase (RTK) screens were used to identify novel proteins that underpin the migratory/invasive phenotype. Migration/invasion was assessed using the XCELLigence system. Tumors from patients with early-stage colorectal cancer (N = 336) were examined for AXL expression. Results: Invasive colorectal cancer cell subpopulations showed a transition from an epithelial-to-mesenchymal like phenotype with significant increases in migration, invasion, colony-forming ability, and an attenuation of EGF receptor (EGFR)/HER2 autocrine signaling. RTK arrays showed significant increases in AXL levels in all invasive sublines. Importantly, 5-FU treatment resulted in significantly increased migration and invasion, and targeting AXL using pharmacologic inhibition or RNA interference (RNAi) approaches suppressed basal and 5-FU–induced migration and invasion. Significantly, high AXL mRNA and protein expression were found to be associated with poor overall survival in early-stage colorectal cancer tissues. Conclusions: We have identified AXL as a poor prognostic marker and important mediator of cell migration/invasiveness in colorectal cancer. These findings provide support for the further investigation of AXL as a novel prognostic biomarker and therapeutic target in colorectal cancer, in particular in the adjuvant disease in which EGFR/VEGF–targeted therapies have failed. Clin Cancer Res; 20(1); 164–75. ©2013 AACR.


Cancer Research | 2011

Oncogenic Kras Promotes Chemotherapy-Induced Growth Factor Shedding via ADAM17

Sandra Van Schaeybroeck; Joan Kyula; Audrey Fenton; Catherine S. Fenning; Takehiko Sasazuki; Senji Shirasawa; Daniel B. Longley; Patrick G. Johnston

Oncogenic mutations in Kras occur in 40% to 45% of patients with advanced colorectal cancer (CRC). We have previously shown that chemotherapy acutely activates ADAM17, resulting in growth factor shedding, growth factor receptor activation, and drug resistance in CRC tumors. In this study, we examined the role of mutant Kras in regulating growth factor shedding and ADAM17 activity, using isogenic Kras mutant (MT) and wild-type (WT) HCT116 CRC cells. Significantly higher levels of TGF-α and VEGF were shed from KrasMT HCT116 cells, both basally and following chemotherapy treatment, and this correlated with increased pErk (phosphorylated extracellular signal regulated kinase)1/2 levels and ADAM17 activity. Inhibition of Kras, MEK (MAP/ERK kinase)1/2, or Erk1/2 inhibition abrogated chemotherapy-induced ADAM17 activity and TGF-α shedding. Moreover, we found that these effects were not drug or cell line specific. In addition, MEK1/2 inhibition in KrasMT xenografts resulted in significant decreases in ADAM17 activity and growth factor shedding in vivo, which correlated with dramatically attenuated tumor growth. Furthermore, we found that MEK1/2 inhibition significantly induced apoptosis both alone and when combined with chemotherapy in KrasMT cells. Importantly, we found that sensitivity to MEK1/2 inhibition was ADAM17 dependent in vitro and in vivo. Collectively, our findings indicate that oncogenic Kras regulates ADAM17 activity and thereby growth factor ligand shedding in a MEK1/2/Erk1/2-dependent manner and that KrasMT CRC tumors are vulnerable to MEK1/2 inhibitors, at least in part, due to their dependency on ADAM17 activity.


Cancer Research | 2008

Src and ADAM-17-mediated shedding of transforming growth factor-alpha is a mechanism of acute resistance to TRAIL.

Sandra Van Schaeybroeck; Donal M. Kelly; Joan Kyula; Susan Stokesberry; Dean A. Fennell; Patrick G. Johnston; Daniel B. Longley

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L) has emerged as a promising anticancer agent. However, resistance to TRAIL is likely to be a major problem, and sensitization of cancer cells to TRAIL may therefore be an important anticancer strategy. In this study, we examined the effect of the epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) gefitinib and a human epidermal receptor 2 (HER2)-TKI (M578440) on the sensitivity of human colorectal cancer (CRC) cell lines to recombinant human TRAIL (rhTRAIL). A synergistic interaction between rhTRAIL and gefitinib and rhTRAIL and M578440 was observed in both rhTRAIL-sensitive and resistant CRC cells. This synergy correlated with an increase in EGFR and HER2 activation after rhTRAIL treatment. Furthermore, treatment of CRC cells with rhTRAIL resulted in activation of the Src family kinases (SFK). Importantly, we found that rhTRAIL treatment induced shedding of transforming growth factor-alpha (TGF-alpha) that was dependent on SFK activity and the protease ADAM-17. Moreover, this shedding of TGF-alpha was critical for rhTRAIL-induced activation of EGFR. In support of this, SFK inhibitors and small interfering RNAs targeting ADAM-17 and TGF-alpha also sensitized CRC cells to rhTRAIL-mediated apoptosis. Taken together, our findings indicate that both rhTRAIL-sensitive and resistant CRC cells respond to rhTRAIL treatment by activating an EGFR/HER2-mediated survival response and that these cells can be sensitized to rhTRAIL using EGFR/HER2-targeted therapies. Furthermore, this acute response to rhTRAIL is regulated by SFK-mediated and ADAM-17-mediated shedding of TGF-alpha, such that targeting SFKs or inhibiting ADAM-17, in combination with rhTRAIL, may enhance the response of CRC tumors to rhTRAIL.


Clinical Cancer Research | 2012

Identification of Galanin and Its Receptor GalR1 as Novel Determinants of Resistance to Chemotherapy and Potential Biomarkers in Colorectal Cancer

Leanne Stevenson; Wendy L. Allen; Richard Turkington; Puthen V. Jithesh; Irina Proutski; Gail E. Stewart; Heinz-Josef Lenz; Sandra Van Schaeybroeck; Daniel B. Longley; Patrick G. Johnston

Purpose: A major factor limiting the effective clinical management of colorectal cancer (CRC) is resistance to chemotherapy. Therefore, the identification of novel, therapeutically targetable mediators of resistance is vital. Experimental design: We used a CRC disease-focused microarray platform to transcriptionally profile chemotherapy-responsive and nonresponsive pretreatment metastatic CRC liver biopsies and in vitro samples, both sensitive and resistant to clinically relevant chemotherapeutic drugs (5-FU and oxaliplatin). Pathway and gene set enrichment analyses identified candidate genes within key pathways mediating drug resistance. Functional RNAi screening identified regulators of drug resistance. Results: Mitogen-activated protein kinase signaling, focal adhesion, cell cycle, insulin signaling, and apoptosis were identified as key pathways involved in mediating drug resistance. The G-protein–coupled receptor galanin receptor 1 (GalR1) was identified as a novel regulator of drug resistance. Notably, silencing either GalR1 or its ligand galanin induced apoptosis in drug-sensitive and resistant cell lines and synergistically enhanced the effects of chemotherapy. Mechanistically, GalR1/galanin silencing resulted in downregulation of the endogenous caspase-8 inhibitor FLIPL, resulting in induction of caspase-8–dependent apoptosis. Galanin mRNA was found to be overexpressed in colorectal tumors, and importantly, high galanin expression correlated with poor disease-free survival of patients with early-stage CRC. Conclusion: This study shows the power of systems biology approaches to identify key pathways and genes that are functionally involved in mediating chemotherapy resistance. Moreover, we have identified a novel role for the GalR1/galanin receptor–ligand axis in chemoresistance, providing evidence to support its further evaluation as a potential therapeutic target and biomarker in CRC. Clin Cancer Res; 18(19); 5412–26. ©2012 AACR.


Clinical Cancer Research | 2016

EphA2 expression is a key driver of migration and invasion and a poor prognostic marker in colorectal cancer.

Philip D. Dunne; Sonali Dasgupta; Jaine K. Blayney; Darragh G. McArt; Keara Redmond; Jessica-Anne Weir; Conor Bradley; Takehiko Sasazuki; Senji Shirasawa; Tingting Wang; Supriya Srivastava; Chee Wee Ong; Kenneth Arthur; Manuel Salto-Tellez; Richard Wilson; Patrick G. Johnston; Sandra Van Schaeybroeck

Purpose: EphA2, a member of the Eph receptor tyrosine kinases family, is an important regulator of tumor initiation, neovascularization, and metastasis in a wide range of epithelial and mesenchymal cancers; however, its role in colorectal cancer recurrence and progression is unclear. Experimental Design: EphA2 expression was determined by immunohistochemistry in stage II/III colorectal tumors (N = 338), and findings correlated with clinical outcome. The correlation between EphA2 expression and stem cell markers CD44 and Lgr5 was examined. The role of EphA2 in migration/invasion was assessed using a panel of KRAS wild-type (WT) and mutant (MT) parental and invasive colorectal cancer cell line models. Results: Colorectal tumors displayed significantly higher expression levels of EphA2 compared with matched normal tissue, which positively correlated with high CD44 and Lgr5 expression levels. Moreover, high EphA2 mRNA and protein expression were found to be associated with poor overall survival in stage II/III colorectal cancer tissues, in both univariate and multivariate analyses. Preclinically, we found that EphA2 was highly expressed in KRASMT colorectal cancer cells and that EphA2 levels are regulated by the KRAS-driven MAPK and RalGDS-RalA pathways. Moreover, EphA2 levels were elevated in several invasive daughter cell lines, and downregulation of EphA2 using RNAi or recombinant EFNA1 suppressed migration and invasion of KRASMT colorectal cancer cells. Conclusions: These data show that EpHA2 is a poor prognostic marker in stage II/III colorectal cancer, which may be due to its ability to promote cell migration and invasion, providing support for the further investigation of EphA2 as a novel prognostic biomarker and therapeutic target. Clin Cancer Res; 22(1); 230–42. ©2015 AACR.

Collaboration


Dive into the Sandra Van Schaeybroeck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel B. Longley

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip D. Dunne

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Mark Lawler

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Darragh G. McArt

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Richard Wilson

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Wendy L. Allen

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Joan Kyula

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge