Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darryn W. Waugh is active.

Publication


Featured researches published by Darryn W. Waugh.


Journal of Geophysical Research | 2006

Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past

Veronika Eyring; Neal Butchart; Darryn W. Waugh; Hideharu Akiyoshi; John Austin; Slimane Bekki; G. E. Bodeker; B. A. Boville; C. Brühl; M. P. Chipperfield; Eugene C. Cordero; Martin Dameris; Makoto Deushi; Vitali E. Fioletov; S. M. Frith; Rolando R. Garcia; Andrew Gettelman; Marco A. Giorgetta; Volker Grewe; L. Jourdain; Douglas E. Kinnison; E. Mancini; Elisa Manzini; Marion Marchand; Daniel R. Marsh; Tatsuya Nagashima; Paul A. Newman; J. E. Nielsen; Steven Pawson; G. Pitari

Simulations of the stratosphere from thirteen coupled chemistry-climate models (CCMs) are evaluated to provide guidance for the interpretation of ozone predictions made by the same CCMs. The focus of the evaluation is on how well the fields and processes that are important for determining the ozone distribution are represented in the simulations of the recent past. The core period of the evaluation is from 1980 to 1999 but long-term trends are compared for an extended period (1960–2004). Comparisons of polar high-latitude temperatures show that most CCMs have only small biases in the Northern Hemisphere in winter and spring, but still have cold biases in the Southern Hemisphere spring below 10 hPa. Most CCMs display the correct stratospheric response of polar temperatures to wave forcing in the Northern, but not in the Southern Hemisphere. Global long-term stratospheric temperature trends are in reasonable agreement with satellite and radiosonde observations. Comparisons of simulations of methane, mean age of air, and propagation of the annual cycle in water vapor show a wide spread in the results, indicating differences in transport. However, for around half the models there is reasonable agreement with observations. In these models the mean age of air and the water vapor tape recorder signal are generally better than reported in previous model intercomparisons. Comparisons of the water vapor and inorganic chlorine (Cly) fields also show a large intermodel spread. Differences in tropical water vapor mixing ratios in the lower stratosphere are primarily related to biases in the simulated tropical tropopause temperatures and not transport. The spread in Cly, which is largest in the polar lower stratosphere, appears to be primarily related to transport differences. In general the amplitude and phase of the annual cycle in total ozone is well simulated apart from the southern high latitudes. Most CCMs show reasonable agreement with observed total ozone trends and variability on a global scale, but a greater spread in the ozone trends in polar regions in spring, especially in the Arctic. In conclusion, despite the wide range of skills in representing different processes assessed here, there is sufficient agreement between the majority of the CCMs and the observations that some confidence can be placed in their predictions.


Journal of Climate | 2011

Stratospheric Ozone Depletion: The Main Driver of Twentieth-Century Atmospheric Circulation Changes in the Southern Hemisphere

Lorenzo M. Polvani; Darryn W. Waugh; Gustavo P. Correa; Seok-Woo Son

The importance of stratospheric ozone depletion on the atmospheric circulation of the troposphere is studied with an atmospheric general circulation model, the Community Atmospheric Model, version 3 (CAM3), for the second half of the twentieth century. In particular, the relative importance of ozone depletion is contrasted with that of increased greenhouse gases and accompanying sea surface temperature changes. By specifying ozone and greenhouse gas forcings independently, and performing long, time-slice integrations,it is shown thatthe impactsof ozone depletionare roughly2‐3 times larger thanthoseassociated with increased greenhouse gases, for the Southern Hemisphere tropospheric summer circulation. The formation of the ozone hole is shown to affect not only the polar tropopause and the latitudinal position of the midlatitude jet; it extends to the entire hemisphere, resulting in a broadening of the Hadley cell and a poleward extension of the subtropical dry zones. The CAM3 results are compared to and found to be in excellent agreement with those of the multimodel means of the recent Coupled Model Intercomparison Project (CMIP3) and Chemistry‐Climate Model Validation (CCMVal2) simulations. This study, therefore, strongly suggests that most Southern Hemisphere tropospheric circulation changes, in austral summerover the second half of the twentieth century, have been caused by polar stratospheric ozone depletion.


Journal of Geophysical Research | 2007

Multimodel projections of stratospheric ozone in the 21st century

Veronika Eyring; Darryn W. Waugh; G. E. Bodeker; Eugene C. Cordero; Hideharu Akiyoshi; John Austin; S. R. Beagley; B. A. Boville; Peter Braesicke; C. Brühl; Neal Butchart; M. P. Chipperfield; Martin Dameris; Rudolf Deckert; Makoto Deushi; S. M. Frith; Rolando R. Garcia; Andrew Gettelman; Marco A. Giorgetta; Douglas E. Kinnison; E. Mancini; Elisa Manzini; Daniel R. Marsh; Sigrun Matthes; Tatsuya Nagashima; Paul A. Newman; J. E. Nielsen; S. Pawson; G. Pitari; David A. Plummer

[1] Simulations from eleven coupled chemistry-climate models (CCMs) employing nearly identical forcings have been used to project the evolution of stratospheric ozone throughout the 21st century. The model-to-model agreement in projected temperature trends is good, and all CCMs predict continued, global mean cooling of the stratosphere over the next 5 decades, increasing from around 0.25 K/decade at 50 hPa to around 1 K/ decade at 1 hPa under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. In general, the simulated ozone evolution is mainly determined by decreases in halogen concentrations and continued cooling of the global stratosphere due to increases in greenhouse gases (GHGs). Column ozone is projected to increase as stratospheric halogen concentrations return to 1980s levels. Because of ozone increases in the middle and upper stratosphere due to GHGinduced cooling, total ozone averaged over midlatitudes, outside the polar regions, and globally, is projected to increase to 1980 values between 2035 and 2050 and before lowerstratospheric halogen amounts decrease to 1980 values. In the polar regions the CCMs simulate small temperature trends in the first and second half of the 21st century in midwinter. Differences in stratospheric inorganic chlorine (Cly) among the CCMs are key to diagnosing the intermodel differences in simulated ozone recovery, in particular in the Antarctic. It is found that there are substantial quantitative differences in the simulated Cly, with the October mean Antarctic Cly peak value varying from less than 2 ppb to over 3.5 ppb in the CCMs, and the date at which the Cly returns to 1980 values varying from before 2030 to after 2050. There is a similar variation in the timing of recovery of Antarctic springtime column ozone back to 1980 values. As most models underestimate peak Clynear 2000, ozone recovery in the Antarctic could occur even later, between 2060 and 2070. In the Arctic the column ozone increase in spring does not follow halogen decreases as closely as in the Antarctic, reaching 1980 values before Arctic halogen amounts decrease


Science | 2008

The Impact of Stratospheric Ozone Recovery on the Southern Hemisphere Westerly Jet

Seok-Woo Son; Lorenzo M. Polvani; Darryn W. Waugh; Hideharu Akiyoshi; Rolando R. Garcia; Douglas E. Kinnison; S. Pawson; E. Rozanov; Theodore G. Shepherd; Kiyotaka Shibata

In the past several decades, the tropospheric westerly winds in the Southern Hemisphere have been observed to accelerate on the poleward side of the surface wind maximum. This has been attributed to the combined anthropogenic effects of increasing greenhouse gases and decreasing stratospheric ozone and is predicted to continue by the Intergovernmental Panel on Climate Change/Fourth Assessment Report (IPCC/AR4) models. In this paper, the predictions of the Chemistry-Climate Model Validation (CCMVal) models are examined: Unlike the AR4 models, the CCMVal models have a fully interactive stratospheric chemistry. Owing to the expected disappearance of the ozone hole in the first half of the 21st century, the CCMVal models predict that the tropospheric westerlies in Southern Hemisphere summer will be decelerated, on the poleward side, in contrast with the prediction of most IPCC/AR4 models.


Journal of Climate | 2004

Upward Wave Activity Flux as a Precursor to Extreme Stratospheric Events and Subsequent Anomalous Surface Weather Regimes

Lorenzo M. Polvani; Darryn W. Waugh

Abstract It has recently been shown that extreme stratospheric events (ESEs) are followed by surface weather anomalies (for up to 60 days), suggesting that stratospheric variability might be used to extend weather prediction beyond current time scales. In this paper, attention is drawn away from the stratosphere to demonstrate that the originating point of ESEs is located in the troposphere. First, it is shown that anomalously strong eddy heat fluxes at 100 hPa nearly always precede weak vortex events, and conversely, anomalously weak eddy heat fluxes precede strong vortex events, consistent with wave–mean flow interaction theory. This finding clarifies the dynamical nature of ESEs and suggests that a major source of stratospheric variability (and thus predictability) is located in the troposphere below and not in the stratosphere itself. Second, it is shown that the daily time series of eddy heat flux found at 100 hPa and integrated over the prior 40 days, exhibit a remarkably high anticorrelation (−0.8)...


Journal of Geophysical Research | 2010

Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment

Seok-Woo Son; Edwin P. Gerber; Judith Perlwitz; Lorenzo M. Polvani; Nathan P. Gillett; Kyong-Hwan Seo; Veronika Eyring; Theodore G. Shepherd; Darryn W. Waugh; Hideharu Akiyoshi; J. Austin; A. J. G. Baumgaertner; Slimane Bekki; Peter Braesicke; C. Brühl; Neal Butchart; M. P. Chipperfield; David Cugnet; Martin Dameris; S. Dhomse; S. M. Frith; Hella Garny; Rolando R. Garcia; Steven C. Hardiman; Patrick Jöckel; Jean-Francois Lamarque; E. Mancini; Marion Marchand; M. Michou; Tetsu Nakamura

The impact of stratospheric ozone on the tropospheric general circulation of the Southern Hemisphere (SH) is examined with a set of chemistry-climate models participating in the Stratospheric Processes and their Role in Climate (SPARC)/Chemistry-Climate Model Validation project phase 2 (CCMVal-2). Model integrations of both the past and future climates reveal the crucial role of stratospheric ozone in driving SH circulation change: stronger ozone depletion in late spring generally leads to greater poleward displacement and intensification of the tropospheric midlatitude jet, and greater expansion of the SH Hadley cell in the summer. These circulation changes are systematic as poleward displacement of the jet is typically accompanied by intensification of the jet and expansion of the Hadley cell. Overall results are compared with coupled models participating in the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), and possible mechanisms are discussed. While the tropospheric circulation response appears quasi-linearly related to stratospheric ozone changes, the quantitative response to a given forcing varies considerably from one model to another. This scatter partly results from differences in model climatology. It is shown that poleward intensification of the westerly jet is generally stronger in models whose climatological jet is biased toward lower latitudes. This result is discussed in the context of quasi-geostrophic zonal mean dynamics.


Journal of Climate | 2010

Chemistry-climate model simulations of twenty-first century stratospheric climate and circulation changes

Neal Butchart; Irene Cionni; Veronika Eyring; Theodore G. Shepherd; Darryn W. Waugh; Hideharu Akiyoshi; J. Austin; C. Brühl; M. P. Chipperfield; Eugene C. Cordero; Martin Dameris; Rudolf Deckert; S. Dhomse; S. M. Frith; Rolando R. Garcia; Andrew Gettelman; Marco A. Giorgetta; Douglas E. Kinnison; Feng Li; E. Mancini; Charles McLandress; Steven Pawson; G. Pitari; David A. Plummer; E. Rozanov; F. Sassi; J. F. Scinocca; K. Shibata; B. Steil; Wenshou Tian

The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry–climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 6 0.07 K decade 21 at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 K decade 21 at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twentyfirst century. The subtropical jets accelerate in response to climate change and the ozone recovery produces a westward acceleration of the lower-stratospheric wind over the Antarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer–Dobson


Journal of Geophysical Research | 1994

Transport out of the lower stratospheric Arctic vortex by Rossby wave breaking

Darryn W. Waugh; R. A. Plumb; Roger Atkinson; Mark R. Schoeberl; Leslie R. Lait; Paul A. Newman; M. Loewenstein; D. W. Toohey; Linnea M. Avallone; C. R. Webster; R. D. May

The fine-scale structure in lower stratospheric tracer transport during the period of the two Arctic Airborne Stratospheric Expeditions (January and February 1989; December 1991 to March 1992) is investigated using contour advection with surgery calculations. These calculations show that Rossby wave breaking is an ongoing occurrence during these periods and that air is ejected from the polar vortex in the form of long filamentary structures. There is good qualitative agreement between these filaments and measurements of chemical tracers taken aboard the NASA ER-2 aircraft. The ejected air generally remains filamentary and is stretched and mixed with midlatitude air as it is wrapped around the vortex. This process transfers vortex air into midlatitudes and also produces a narrow region of fine-scale filaments surrounding the polar vortex. Among other things, this makes it difficult to define a vortex edge. The calculations also show that strong stirring can occur inside as well as outside the vortex.


Journal of the Atmospheric Sciences | 1994

Contour advection with surgery : a technique for investigating finescale structure in tracer transport

Darryn W. Waugh; R. Alan Plumb

Abstract We present a trajectory technique, contour advection with surgery (CAS), for tracing the evolution of material contours in a specified (including observed) evolving flow. CAS uses the algorithms developed by Dritschel for contour dynamics/surgery to trace the evolution of specified contours. The contours are represented by a series of particles, which are advected by a specified, gridded, wind distribution. The resolution of the contours is preserved by continually adjusting the number of particles, and finescale features are produced that are not present in the input data (and cannot easily be generated using standard trajectory techniques). The reliability, and dependence on the spatial and temporal resolution of the wind field, of the CAS procedure is examined by comparisons with high-resolution numerical data (from contour dynamics calculations and from a general circulation model), and with routine stratospheric analyses. These comparisons show that the large-scale motions dominate the defor...


Journal of Geophysical Research | 1999

Evaluation of transport in stratospheric models

Timothy M. Hall; Darryn W. Waugh; Kristie A. Boering; R. Alan Plumb

We evaluate transport characteristics of two- and three-dimensional chemical transport models of the stratosphere by comparing their simulations of the mean age of stratospheric air and the propagation of annually periodic oscillations in tracer mixing ratio at the tropical tropopause into the stratosphere to inferences from in situ and satellite observations of CO2, SF6, and water vapor. The models, participants in the recent NASA “Models and Measurements II” study, display a wide range of performance. Most models propagate annual oscillations too rapidly in the vertical and overattenuate the signal. Most models also significantly underestimate mean age throughout the stratosphere, and most have at least one of several unrealistic features in their mean age contour shapes. In the lower stratosphere, model-to-model variation in N2O, NOy, and Cly is well correlated with variation in mean age, and the magnitude of NOy and Cly variation is large. We conclude that model transport inaccuracies significantly affect simulations of important long-lived chemical species in the lower stratosphere.

Collaboration


Dive into the Darryn W. Waugh's collaboration.

Top Co-Authors

Avatar

Paul A. Newman

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar

Luke D. Oman

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne R. Douglass

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy M. Hall

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar

Douglas E. Kinnison

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Chaim I. Garfinkel

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Clara Orbe

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge