Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew K. Dunn is active.

Publication


Featured researches published by Andrew K. Dunn.


Nature Medicine | 2002

Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model

Hayrunnisa Bolay; Uwe Reuter; Andrew K. Dunn; Zhihong Huang; David A. Boas; Michael A. Moskowitz

Although the trigeminal nerve innervates the meninges and participates in the genesis of migraine headaches, triggering mechanisms remain controversial and poorly understood. Here we establish a link between migraine aura and headache by demonstrating that cortical spreading depression, implicated in migraine visual aura, activates trigeminovascular afferents and evokes a series of cortical meningeal and brainstem events consistent with the development of headache. Cortical spreading depression caused long-lasting blood-flow enhancement selectively within the middle meningeal artery dependent upon trigeminal and parasympathetic activation, and plasma protein leakage within the dura mater in part by a neurokinin-1-receptor mechanism. Our findings provide a neural mechanism by which extracerebral cephalic blood flow couples to brain events; this mechanism explains vasodilation during headache and links intense neurometabolic brain activity with the transmission of headache pain by the trigeminal nerve.


Journal of Cerebral Blood Flow and Metabolism | 2001

Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle

Andrew K. Dunn; Hayrunnisa Bolay; Michael A. Moskowitz; David A. Boas

A method for dynamic, high-resolution cerebral blood flow (CBF) imaging is presented in this article. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution are obtained. The regional CBF changes measured with the speckle technique are validated through direct comparison with conventional laser-Doppler measurements. Using this method, dynamic images of the relative CBF changes during focal cerebral ischemia and cortical spreading depression were obtained along with electrophysiologic recordings. Upon middle cerebral artery (MCA) occlusion, the speckle technique yielded high-resolution images of the residual CBF gradient encompassing the ischemic core, penumbra, oligemic, and normally perfused tissues over a 6 × 4 mm cortical area. Successive speckle images demonstrated a further decrease in residual CBF indicating an expansion of the ischemic zone with finely delineated borders. Dynamic CBF images during cortical spreading depression revealed a 2 to 3 mm area of increased CBF (160% to 250%) that propagated with a velocity of 2 to 3 mm/min. This technique is easy to implement and can be used to monitor the spatial and temporal evolution of CBF changes with high resolution in studies of cerebral pathophysiology.


Journal of Biomedical Optics | 2010

Laser speckle contrast imaging in biomedical optics

David A. Boas; Andrew K. Dunn

First introduced in the 1980s, laser speckle contrast imaging is a powerful tool for full-field imaging of blood flow. Recently laser speckle contrast imaging has gained increased attention, in part due to its rapid adoption for blood flow studies in the brain. We review the underlying physics of speckle contrast imaging and discuss recent developments to improve the quantitative accuracy of blood flow measures. We also review applications of laser speckle contrast imaging in neuroscience, dermatology and ophthalmology.


Neuron | 2003

Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex

Anna Devor; Andrew K. Dunn; Mark L. Andermann; István Ulbert; David A. Boas; Anders M. Dale

Recent advances in brain imaging techniques, including functional magnetic resonance imaging (fMRI), offer great promise for noninvasive mapping of brain function. However, the indirect nature of the imaging signals to the underlying neural activity limits the interpretation of the resulting maps. The present report represents the first systematic study with sufficient statistical power to quantitatively characterize the relationship between changes in blood oxygen content and the neural spiking and synaptic activity. Using two-dimensional optical measurements of hemodynamic signals, simultaneous recordings of neural activity, and an event-related stimulus paradigm, we demonstrate that (1) there is a strongly nonlinear relationship between electrophysiological measures of neuronal activity and the hemodynamic response, (2) the hemodynamic response continues to grow beyond the saturation of electrical activity, and (3) the initial increase in deoxyhemoglobin that precedes an increase in blood volume is counterbalanced by an equal initial decrease in oxyhemoglobin.


Applied Optics | 1999

Light scattering from cells: finite-difference time-domain simulations and goniometric measurements

Rebekah A. Drezek; Andrew K. Dunn; Rebekah Richards-Kortum

We have examined the light-scattering properties of inhomogeneous biological cells through a combination of theoretical simulations and goniometric measurements. A finite-difference time-domain (FDTD) technique was used to compute intensity as a function of scattering angle for cells containing multiple organelles and spatially varying index of refraction profiles. An automated goniometer was constructed to measure the scattering properties of dilute cell suspensions. Measurements compared favorably with FDTD predictions. FDTD and experimental results indicate that scattering properties are strongly influenced by cellular biochemical and morphological structure.


Optics Letters | 2003

Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation

Andrew K. Dunn; Anna Devor; Hayrunnisa Bolay; Mark L. Andermann; Michael A. Moskowitz; Anders M. Dale; David A. Boas

A simple instrument is demonstrated for high-resolution simultaneous imaging of total hemoglobin concentration and oxygenation and blood flow in the brain by combining rapid multiwavelength imaging with laser speckle contrast imaging. The instrument was used to image changes in oxyhemoglobin and deoxyhemoglobin and blood flow during cortical spreading depression and single whisker stimulation in rats through a thinned skull. The ability to image blood flow and hemoglobin concentration changes simultaneously with high resolution will permit detailed quantitative analysis of the spatiotemporal hemodynamics of functional brain activation, including imaging of oxygen metabolism. This is of significance to the neuroscience community and will lead to a better understanding of the interrelationship of neural, metabolic, and hemodynamic processes in normal and diseased brains.


NeuroImage | 2005

Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex

Andrew K. Dunn; Anna Devor; Anders M. Dale; David A. Boas

The spatial extent of the changes in oxy-hemoglobin (HbO), deoxy-hemoglobin (HbR), total hemoglobin concentration (HbT), cerebral blood flow (CBF), and the cerebral metabolic rate of oxygen (CMRO(2)) in response to forepaw and whisker stimulation were compared in the rat somatosensory cortex using a combination of multi-wavelength reflectance imaging and laser speckle contrast imaging of cerebral blood flow. The spatial extents of the response of each hemodynamic parameter and CMRO(2) were found to be comparable at the time of peak response, and at early times following stimulation onset, the spatial extent of the change in HbR was smaller than that of HbO, HbT, CBF, and CMRO(2). In addition, a slight spatial dependence was found in the power law coefficient relating changes in CBF and HbT. Although the CMRO(2) response is a metabolic measure and thus expected to have a more localized response than the hemodynamic parameters, the results presented here suggest that this may not be the case in general, possibly due to the increased sensitivity of optical imaging techniques to superficial cortical layers where the lateral extent of the metabolic and neuronal activation is larger compared to that in layer IV. In addition, we found that the measured spatial extent of the CMRO(2) changes was insensitive to assumptions made in the calculation of the CMRO(2) changes such as baseline hemoglobin concentrations, vascular weighting constants, and wavelength dependence of tissue scattering. Multi-parameter full field imaging of the functional response provides a more complete picture of the hemodynamic response to functional activation including the spatial and temporal estimation of CMRO(2) changes.


NeuroImage | 2007

Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation.

Elizabeth M. C. Hillman; Anna Devor; Matthew B. Bouchard; Andrew K. Dunn; G.W. Krauss; Jesse Skoch; Brian J. Bacskai; Anders M. Dale; David A. Boas

The cortical hemodynamic response to somatosensory stimulus is investigated at the level of individual vascular compartments using both depth-resolved optical imaging and in-vivo two-photon microscopy. We utilize a new imaging and spatiotemporal analysis approach that exploits the different characteristic dynamics of responding arteries, arterioles, capillaries and veins to isolate their three-dimensional spatial extent within the cortex. This spatial delineation is validated using vascular casts. Temporal delineation is supported by in-vivo two-photon microscopy of the temporal dynamics and vascular mechanisms of the arteriolar and venous responses. Using these techniques we have been able to characterize the roles of the different vascular compartments in generating and controlling the hemodynamic response to somatosensory stimulus. We find that changes in arteriolar total hemoglobin concentration agree well with arteriolar dilation dynamics, which in turn correspond closely with changes in venous blood flow. For 4-s stimuli, we see only small changes in venous hemoglobin concentration, and do not detect measurable dilation or ballooning in the veins. Instead, we see significant evidence of capillary hyperemia. We compare our findings to historical observations of the composite hemodynamic response from other modalities including functional magnetic resonance imaging. Implications of our results are discussed with respect to mathematical models of cortical hemodynamics, and to current theories on the mechanisms underlying neurovascular coupling. We also conclude that our spatiotemporal analysis approach is capable of isolating and localizing signals from the capillary bed local to neuronal activation, and holds promise for improving the specificity of other hemodynamic imaging modalities.


IEEE Journal of Selected Topics in Quantum Electronics | 1996

Three-dimensional computation of light scattering from cells

Andrew K. Dunn; Rebecca Richards-Kortum

Using the finite-difference time-domain method, three-dimensional scattering patterns are computed for cells containing multiple organelles. The scattering cross section and average cosine of the scattering angle are computed for cells as a function of volume fraction of melanin granules and mitochondria. Results show that small organelles play a significant role in light scattering from cells, and the volume fraction of organelles affects both the total amount of scattered light and the angular distribution of scattered light.


Journal of Cerebral Blood Flow and Metabolism | 2004

Laser Speckle Flowmetry for the Study of Cerebrovascular Physiology in Normal and Ischemic Mouse Cortex

Cenk Ayata; Andrew K. Dunn; Yasemin Gursoy-Ozdemir; Zhihong Huang; David A. Boas; Michael A. Moskowitz

Laser speckle flowmetry (LSF) is useful to assess noninvasively two-dimensional cerebral blood flow (CBF) with high temporal and spatial resolution. The authors show that LSF can image the spatiotemporal dynamics of CBF changes in mice through an intact skull. When measured by LSF, peak CBF increases during whisker stimulation closely correlated with simultaneous laser-Doppler flowmetry (LDF) measurements, and were greater within the branches of the middle cerebral artery supplying barrel cortex than within barrel cortex capillary bed itself. When LSF was used to study the response to inhaled CO2 (5%), the flow increase was similar to the response reported using LDF. For the upper and lower limits of autoregulation, mean arterial pressure values were 110 and 40 mm Hg, respectively. They also show a linear relationship between absolute resting CBF, as determined by [14C]iodoamphetamine technique, and 1/τc values obtained using LSF, and used 1/τc values to compare resting CBF between different animals. Finally, the authors studied CBF changes after distal middle cerebral artery ligation, and developed a model to investigate the spatial distribution and hemodynamics of moderate to severely ischemic cortex. In summary, LSF has distinct advantages over LDF for CBF monitoring because of high spatial resolution.

Collaboration


Dive into the Andrew K. Dunn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evan P. Perillo

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

S. M. Shams Kazmi

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Hsin-Chih Yeh

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Anna Devor

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders M. Dale

University of California

View shared research outputs
Top Co-Authors

Avatar

Ashley J. Welch

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Lisa M. Richards

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge