David A. Rutan
Langley Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David A. Rutan.
Journal of Climate | 2013
Seiji Kato; Norman G. Loeb; Fred G. Rose; David R. Doelling; David A. Rutan; Thomas E. Caldwell; Lisan Yu; Robert A. Weller
AbstractThe estimate of surface irradiance on a global scale is possible through radiative transfer calculations using satellite-retrieved surface, cloud, and aerosol properties as input. Computed top-of-atmosphere (TOA) irradiances, however, do not necessarily agree with observation-based values, for example, from the Clouds and the Earth’s Radiant Energy System (CERES). This paper presents a method to determine surface irradiances using observational constraints of TOA irradiance from CERES. A Lagrange multiplier procedure is used to objectively adjust inputs based on their uncertainties such that the computed TOA irradiance is consistent with CERES-derived irradiance to within the uncertainty. These input adjustments are then used to determine surface irradiance adjustments. Observations by the Atmospheric Infrared Sounder (AIRS), Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) that are a part of the NASA ...
Journal of Atmospheric and Oceanic Technology | 2015
David A. Rutan; Seiji Kato; David R. Doelling; Fred G. Rose; Le Trang Nguyen; Thomas E. Caldwell; Norman G. Loeb
AbstractThe Clouds and the Earth’s Radiant Energy System Synoptic (SYN1deg), edition 3, product provides climate-quality global 3-hourly 1° × 1°gridded top of atmosphere, in-atmosphere, and surface radiant fluxes. The in-atmosphere surface fluxes are computed hourly using a radiative transfer code based upon inputs from Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), 3-hourly geostationary (GEO) data, and meteorological assimilation data from the Goddard Earth Observing System. The GEO visible and infrared imager calibration is tied to MODIS to ensure uniform MODIS-like cloud properties across all satellite cloud datasets. Computed surface radiant fluxes are compared to surface observations at 85 globally distributed land (37) and ocean buoy (48) sites as well as several other publicly available global surface radiant flux data products. Computed monthly mean downward fluxes from SYN1deg have a bias (standard deviation) of 3.0 W m−2 (5.7%) for shortwave and −4.0 W m−2 (2.9%) for long...
Journal of Atmospheric and Oceanic Technology | 2013
Fred G. Rose; David A. Rutan; Thomas P. Charlock; G. Louis Smith; Seiji Kato
AbstractNASA’s Clouds and the Earth’s Radiant Energy System (CERES) project is responsible for operation and data processing of observations from scanning radiometers on board the Tropical Rainfall Measuring Mission (TRMM), Terra, Aqua, and Suomi National Polar-Orbiting Partnership (NPP) satellites. The clouds and radiative swath (CRS) CERES data product contains irradiances computed using a radiative transfer model for nearly all CERES footprints in addition to top-of-atmosphere (TOA) irradiances derived from observed radiances by CERES instruments. This paper describes a method to constrain computed irradiances by CERES-derived TOA irradiances using Lagrangian multipliers. Radiative transfer model inputs include profiles of atmospheric temperature, humidity, aerosols and ozone, surface temperature and albedo, and up to two sets of cloud properties for a CERES footprint. Those inputs are adjusted depending on predefined uncertainties to match computed TOA and CERES-derived TOA irradiance. Because CERES i...
Journal of Climate | 2008
Seiji Kato; Fred G. Rose; David A. Rutan; Thomas P. Charlock
Abstract The zonal mean atmospheric cloud radiative effect, defined as the difference between the top-of-the-atmosphere (TOA) and surface cloud radiative effects, is estimated from 3 yr of Clouds and the Earth’s Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of the cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of the mean zonal available potential energy. Because the atmospheric cooling ...
Journal of the Atmospheric Sciences | 2005
Z. S. Jin; Thomas P. Charlock; Ken Rutledge; Glenn F. Cota; Ralph A. Kahn; J. Redemann; Taiping Zhang; David A. Rutan; Fred G. Rose
Spectral and broadband radiances and irradiances (fluxes) were measured from surface, airborne, and spaceborne platforms in the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) campaign. The radiation data obtained on the 4 clear days over ocean during CLAMS are analyzed here with the Coupled Ocean‐Atmosphere Radiative Transfer (COART) model. The model is successively compared with observations of broadband fluxes and albedos near the ocean surface from the Clouds and the Earth’s Radiant Energy System (CERES) Ocean Validation Experiment (COVE) sea platform and a low-level OV-10 aircraft, of near-surface spectral albedos from COVE and OV-10, of broadband radiances at multiple angles and inferred top-of-atmosphere (TOA) fluxes from CERES, and of spectral radiances at multiple angles from Airborne Multiangle Imaging Spectroradiometer (MISR), or ‘‘AirMISR,’’ at 20-km altidude. The radiation measurements from different platforms are shown to be consistent with each other and with model results. The discrepancies between the model and observations at the surface are less than 10 W m 22 for downwelling and 2 W m22 for upwelling fluxes. The model‐observation discrepancies for shortwave ocean albedo are less than 8%; some discrepancies in spectral albedo are larger but less than 20%. The discrepancies between low-altitude aircraft and surface measurements are somewhat larger than those between the model and the surface measurements; the former are due to the effects of differences in height, aircraft pitch and roll, and the noise of spatial and temporal variations of atmospheric and oceanic properties. The discrepancy between the model and the CERES observations for the upwelling radiance is 5.9% for all angles; this is reduced to 4.9% if observations within 15 8 of the sun-glint angle are excluded. The measurements and model agree on the principal impacts that ocean optical properties have on upwelling radiation at low levels in the atmosphere. Wind-driven surface roughness significantly affects the upwelling radiances measured by aircraft and satellites at small sun-glint angles, especially in the near-infrared channel of MISR. Intercomparisons of various measurements and the model show that most of the radiation observations in CLAMS are robust, and that the coupled radiative transfer model used here accurately treats scattering and absorption processes in both the air and the water.
Journal of Climate | 2014
Norman G. Loeb; David A. Rutan; Seiji Kato; Weijie Wang
AbstractSatellite and reanalysis data are used to observe interannual variations in atmospheric diabatic heating and circulation within the ascending and descending branches of the Hadley circulation (HC) during the past 12 yr. The column-integrated divergence of dry static energy (DSE) and kinetic energy is inferred from satellite-based observations of atmospheric radiation, precipitation latent heating, and reanalysis-based surface sensible heat flux for monthly positions of the HC branches, determined from a mass weighted zonal mean meridional streamfunction analysis. Mean surface radiative fluxes inferred from satellite and surface measurements are consistent to 1 W m−2 (<1%) over land and 4 W m−2 (2%) over ocean. In the ascending branch, where precipitation latent heating dominates over radiative cooling, discrepancies in latent heating among different precipitation datasets reach 22 W m−2 (17%), compared to 3–6 W m−2 in the descending branches. Whereas direct calculations of DSE divergence from two ...
Journal of Applied Meteorology and Climatology | 2014
David A. Rutan; G. Louis Smith; Takmeng Wong
AbstractFive years of measurements from the Earth Radiation Budget Satellite (ERBS) have been analyzed to define the diurnal cycle of albedo from 55°N to 55°S. The ERBS precesses through all local times every 72 days so as to provide data regarding the diurnal cycles for Earth radiation. Albedo together with insolation at the top of the atmosphere is used to compute the heating of the Earth–atmosphere system; thus its diurnal cycle is important in the energetics of the climate system. A principal component (PC) analysis of the diurnal variation of top-of-atmosphere albedo using these data is presented. The analysis is done separately for ocean and land because of the marked differences of cloud behavior over ocean and over land. For ocean, 90%–92% of the variance in the diurnal cycle is described by a single component; for land, the first PC accounts for 83%–89% of the variance. Some of the variation is due to the increase of albedo with increasing solar zenith angle, which is taken into account in the ER...
Journal of Climate | 2018
Seiji Kato; Fred G. Rose; David A. Rutan; Tyler J. Thorsen; Norman G. Loeb; David R. Doelling; Xianglei Huang; William L. Smith; Wenying Su; Seung Hee Ham
AbstractThe algorithm to produce the Clouds and the Earth’s Radiant Energy System (CERES) Edition 4.0 (Ed4) Energy Balanced and Filled (EBAF)-surface data product is explained. The algorithm forces...
Journal of Atmospheric and Oceanic Technology | 2013
Alexander Radkevich; Konstantin V. Khlopenkov; David A. Rutan; Seiji Kato
AbstractIdentification of clear-sky snow and ice is an important step in the production of cryosphere radiation budget products, which are used in the derivation of long-term data series for climate research. In this paper, a new method of clear-sky snow/ice identification for Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. The algorithm’s goal is to enhance the identification of snow and ice within the Clouds and the Earth’s Radiant Energy System (CERES) data after application of the standard CERES scene identification scheme. The input of the algorithm uses spectral radiances from five MODIS bands and surface skin temperature available in the CERES Single Scanner Footprint (SSF) product. The algorithm produces a cryosphere rating from an aggregated test: a higher rating corresponds to a more certain identification of the clear-sky snow/ice-covered scene. Empirical analysis of regions of interest representing distinctive targets such as snow, ice, ice and water clouds, open waters, an...
Journal of Atmospheric and Oceanic Technology | 2014
Alok K. Shrestha; Seiji Kato; Takmeng Wong; David A. Rutan; Walter F. Miller; Fred G. Rose; G. Louis Smith; Kristopher M. Bedka; Patrick Minnis; Jose R. Fernandez
AbstractThe NOAA-9 Earth Radiation Budget Experiment (ERBE) scanner measured broadband shortwave, longwave, and total radiances from February 1985 through January 1987. These scanner radiances are reprocessed using the more recent Clouds and the Earth’s Radiant Energy System (CERES) unfiltering algorithm. The scene information, including cloud properties, required for reprocessing is derived using Advanced Very High Resolution Radiometer (AVHRR) data on board NOAA-9, while no imager data were used in the original ERBE unfiltering. The reprocessing increases the NOAA-9 ERBE scanner unfiltered longwave radiances by 1.4%–2.0% during daytime and 0.2%–0.3% during nighttime relative to those derived from the ERBE unfiltering algorithm. Similarly, the scanner unfiltered shortwave radiances increase by ~1% for clear ocean and land and decrease for all-sky ocean, land, and snow/ice by ~1%. The resulting NOAA-9 ERBE scanner unfiltered radiances are then compared with NOAA-9 nonscanner irradiances by integrating the...