Walter F. Miller
Science Applications International Corporation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Walter F. Miller.
IEEE Transactions on Geoscience and Remote Sensing | 2011
Patrick Minnis; Szedung Sun-Mack; David F. Young; P. W. Heck; D. P. Garber; Yan Chen; Douglas A. Spangenberg; Robert F. Arduini; Qing Z. Trepte; William L. Smith; J. K. Ayers; Sharon Gibson; Walter F. Miller; Gang Hong; V. Chakrapani; Y. Takano; Kuo-Nan Liou; Yu Xie; Ping Yang
The National Aeronautics and Space Administrations Clouds and the Earths Radiant Energy System (CERES) Project was designed to improve our understanding of the relationship between clouds and solar and longwave radiation. This is achieved using satellite broad-band instruments to map the top-of-atmosphere radiation fields with coincident data from satellite narrow-band imagers employed to retrieve the properties of clouds associated with those fields. This paper documents the CERES Edition-2 cloud property retrieval system used to analyze data from the Tropical Rainfall Measuring Mission Visible and Infrared Scanner and by the MODerate-resolution Imaging Spectrometer instruments on board the Terra and Aqua satellites covering the period 1998 through 2007. Two daytime retrieval methods are explained: the Visible Infrared Shortwave-infrared Split-window Technique for snow-free surfaces and the Shortwave-infrared Infrared Near-infrared Technique for snow or ice-covered surfaces. The Shortwave-infrared Infrared Split-window Technique is used for all surfaces at night. These methods, along with the ancillary data and empirical parameterizations of cloud thickness, are used to derive cloud boundaries, phase, optical depth, effective particle size, and condensed/frozen water path at both pixel and CERES footprint levels. Additional information is presented, detailing the potential effects of satellite calibration differences, highlighting methods to compensate for spectral differences and correct for atmospheric absorption and emissivity, and discussing known errors in the code. Because a consistent set of algorithms, auxiliary input, and calibrations across platforms are used, instrument and algorithm-induced changes in the data record are minimized. This facilitates the use of the CERES data products for studying climate-scale trends.
Journal of Atmospheric and Oceanic Technology | 2002
Patrick Minnis; Louis Nguyen; David R. Doelling; David F. Young; Walter F. Miller; David P. Kratz
Operational meteorological satellites generally lack reliable onboard calibration systems for solar-imaging channels. Current methods for calibrating these channels and for normalizing similar channels on contemporaneous satellite imagers typically rely on a poorly calibrated reference source. To establish a more reliable reference instrument for calibration normalization, this paper examines the use of research satellite imagers that maintain their solar-channel calibrations by using onboard diffuser systems that rely on the sun as an absolute reference. The Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission(TRMM) satellite and the second Along-Track Scanning Radiometer (ATSR-2) on the second European Remote Sensing Satellite (ERS-2) are correlated with matched data from the eighth Geostationary Operational Environmental Satellite (GOES-8), the fifth Geostationary Meteorological satellite(GMS-5), and with each other to examine trends in the solar channels. VIRS data are also correlated with the Terra satellite’s Moderate Resolution Imaging Spectroradiometer (MODIS) provisional data as a preliminary assessment of their relative calibrations. As an additional check on their long-term stability, the VIRS data are compared to the relevant corresponding broadband shortwave radiances of the Clouds and the Earth’s Radiant Energy System (CERES) scanners on TRMM. No statistically significant trend in the calibration of the VIRS 0.65- and 1.64-mm channels could be detected from the comparisons with CERES data taken during 1998 and 2000. The VIRS-to-GOES-8 correlations revealed an annual degradation rate for the GOES-8 visible (0.67 mm) channel of ;7.5% and an initial drop of 16% in the gain from the prelaunch value. The slopes in the GOES-8 visible-channel gain trend lines derived from VIRS data taken after January 1998 and ATSR-2 data taken between October 1995 and December 1999 differed by only 1%‐2% indicating that both reference instruments are highly stable. The mean difference of 3%‐4.8% between the VIRS‐GOES-8 and ATSR-2‐GOES-8 gains is attributed to spectral differences between ATSR-2 and VIRS and to possible biases in the ATSR-2 channel-2 calibration. A degradation rate of 1.3% per year found for the GMS-5 visible channel was confirmed by comparisons with earlier calibrations. The MODIS and VIRS calibrations agreed to within 21% to 3%. Some of the differences between VIRS and the provisional MODIS radiances can be explained by spectral differences between the two instruments. The MODIS measures greater reflectance than VIRS for bright scenes. Although both VIRS and ATSR-2 provide temporally stable calibrations, it is recommended that, at least until MODIS calibrations are finalized, VIRS should be used as a reference source for normalizing operational meteorological satellite imagers because of its broader visible filter.
Journal of Climate | 2007
Norman G. Loeb; Bruce A. Wielicki; Wenying Su; Konstantin Loukachine; Wenbo Sun; Takmeng Wong; Kory J. Priestley; Grant Matthews; Walter F. Miller; Roger Davies
Abstract Observations from the Clouds and the Earth’s Radiant Energy System (CERES), Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) between 2000 and 2005 are analyzed in order to determine if these data are meeting climate accuracy goals recently established by the climate community. The focus is primarily on top-of-atmosphere (TOA) reflected solar radiances and radiative fluxes. Direct comparisons of nadir radiances from CERES, MODIS, and MISR aboard the Terra satellite reveal that the measurements from these instruments exhibit a year-to-year relative stability of better than 1%, with no systematic change with time. By comparison, the climate requirement for the stability of visible radiometer measurements is 1% decade−1. When tropical ocean monthly anomalies in shortwave (SW) TOA radiative fluxes from CERES on Terra are compared with anomalies in Photosynthetically Active Radiation (PAR) from SeaWiF...
Journal of the Atmospheric Sciences | 2005
Alexander Ignatov; Patrick Minnis; Norman G. Loeb; Bruce A. Wielicki; Walter F. Miller; Sunny Sun-Mack; Didier Tanré; Lorraine A. Remer; Istvan Laszlo; Erika B. Geier
Abstract Understanding the impact of aerosols on the earth’s radiation budget and the long-term climate record requires consistent measurements of aerosol properties and radiative fluxes. The Clouds and the Earth’s Radiant Energy System (CERES) Science Team combines satellite-based retrievals of aerosols, clouds, and radiative fluxes into Single Scanner Footprint (SSF) datasets from the Terra and Aqua satellites. Over ocean, two aerosol products are derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) using different sampling and aerosol algorithms. The primary, or M, product is taken from the standard multispectral aerosol product developed by the MODIS aerosol group while a simpler, secondary [Advanced Very High Resolution Radiometer (AVHRR) like], or A, product is derived by the CERES Science Team using a different cloud clearing method and a single-channel aerosol algorithm. Two aerosol optical depths (AOD), τA1 and τA2, are derived from MODIS bands 1 (0.644 μm) and 6 (1.632 μm) rese...
Journal of Atmospheric and Oceanic Technology | 2008
Patrick Minnis; David R. Doelling; Louis Nguyen; Walter F. Miller; Venkatesan Chakrapani
Abstract Several recent research satellites carry self-calibrating multispectral imagers that can be used for calibrating operational imagers lacking complete self-calibrating capabilities. In particular, the visible (VIS, 0.65 μm) channels on operational meteorological satellites are generally calibrated before launch, but require vicarious calibration techniques to monitor the gains and offsets once they are in orbit. To ensure that the self-calibrating instruments are performing as expected, this paper examines the consistencies between the VIS channel (channel 1) reflectances of the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua satellites and the version 5a and 6 reflectances of the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission using a variety of techniques. These include comparisons of Terra and Aqua VIS radiances with coincident broadband shortwave radiances from the well-calibrated Clouds and the Earth’s Radiant Energy System (C...
Journal of Climate | 2011
Seiji Kato; Bruce A. Wielicki; Fred G. Rose; Xu Liu; Patrick C. Taylor; David P. Kratz; Martin G. Mlynczak; David F. Young; Nipa Phojanamongkolkij; Sunny Sun-Mack; Walter F. Miller; Yan Chen
AbstractVariability present at a satellite instrument sampling scale (small-scale variability) has been neglected in earlier simulations of atmospheric and cloud property change retrievals using spatially and temporally averaged spectral radiances. The effects of small-scale variability in the atmospheric change detection process are evaluated in this study. To simulate realistic atmospheric variability, top-of-the-atmosphere nadir-view longwave spectral radiances are computed at a high temporal (instantaneous) resolution with a 20-km field-of-view using cloud properties retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements, along with temperature humidity profiles obtained from reanalysis. Specifically, the effects of the variability on the necessary conditions for retrieving atmospheric changes by a linear regression are tested. The percentage error in the annual 10° zonal mean spectral radiance difference obtained by assuming linear combinations of individual perturbations e...
Fourth International Asia-Pacific Environmental Remote Sensing Symposium 2004: Remote Sensing of the Atmosphere, Ocean, Environment, and Space | 2004
Alexander Ignatov; Patrick Minnis; Bruce A. Wielicki; Norman G. Loeb; Lorraine A. Remer; Yoram J. Kaufman; Walter F. Miller; Sunny Sun-Mack; Istvan Laszlo; Erika B. Geier
MODIS aerosol retrievals over ocean from Terra and Aqua platforms are available from the Clouds and the Earths Radiant Energy System (CERES) Single Scanner Footprint (SSF) datasets generated at NASA Langley Research Center (LaRC). Two aerosol products are reported side by side. The primary M product is generated by subsetting and remapping the multi-spectral (0.44 - 2.1 μm) MOD04 aerosols onto CERES footprints. MOD04 processing uses cloud screening and aerosol algorithms developed by the MODIS science team. The secondary (AVHRR-like) A product is generated in only two MODIS bands: 1 and 6 on Terra, and ` and 7 on Aqua. The A processing uses NASA/LaRC cloud-screening and NOAA/NESDIS single channel aerosol algorthm. The M and A products have been documented elsewhere and preliminarily compared using two weeks of global Terra CERES SSF (Edition 1A) data in December 2000 and June 2001. In this study, the M and A aerosol optical depths (AOD) in MODIS band 1 and (0.64 μm), τ1M and τ1A, are further checked for cross-platform consistency using 9 days of global Terra CERES SSF (Edition 2A) and Aqua CERES SSF (Edition 1A) data from 13 - 21 October 2002.
Journal of Geophysical Research | 2017
Seung Hee Ham; Seiji Kato; Fred G. Rose; David M. Winker; Tristan S. L'Ecuyer; Gerald G. Mace; David Painemal; Sunny Sun-Mack; Yan Chen; Walter F. Miller
Two kinds of cloud products obtained from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) are compared and analyzed in this study; Clouds and the Earths Radiant Energy System (CERES)-CALIPSO-CloudSat-MODIS (CCCM) product and CloudSat radar-lidar (RL) products such as GEOPROF-LIDAR and FLXHR-LIDAR. Compared to GEOPROF-LIDAR, low-level ( 40°). The difference occurs when hydrometeors are detected by CALIPSO lidar but are undetected by CloudSat radar. In the comparison of cloud radiative effects (CREs), global mean differences between CCCM and FLXHR-LIDAR are mostly smaller than 5 W m-2, while noticeable regional differences are found. For example, CCCM shortwave (SW) and longwave (LW) CREs are larger than FXLHR-LIDAR along the west coasts of Africa and America because the GEOPROF-LIDAR algorithm misses shallow marine boundary layer clouds. In addition, FLXHR-LIDAR SW CREs are larger than CCCM counterpart over tropical oceans away from the west coasts of America. Over midlatitude storm-track regions, CCCM SW and LW CREs are larger than FLXHR-LIDAR counterpart.
Journal of Atmospheric and Oceanic Technology | 2014
Alok K. Shrestha; Seiji Kato; Takmeng Wong; David A. Rutan; Walter F. Miller; Fred G. Rose; G. Louis Smith; Kristopher M. Bedka; Patrick Minnis; Jose R. Fernandez
AbstractThe NOAA-9 Earth Radiation Budget Experiment (ERBE) scanner measured broadband shortwave, longwave, and total radiances from February 1985 through January 1987. These scanner radiances are reprocessed using the more recent Clouds and the Earth’s Radiant Energy System (CERES) unfiltering algorithm. The scene information, including cloud properties, required for reprocessing is derived using Advanced Very High Resolution Radiometer (AVHRR) data on board NOAA-9, while no imager data were used in the original ERBE unfiltering. The reprocessing increases the NOAA-9 ERBE scanner unfiltered longwave radiances by 1.4%–2.0% during daytime and 0.2%–0.3% during nighttime relative to those derived from the ERBE unfiltering algorithm. Similarly, the scanner unfiltered shortwave radiances increase by ~1% for clear ocean and land and decrease for all-sky ocean, land, and snow/ice by ~1%. The resulting NOAA-9 ERBE scanner unfiltered radiances are then compared with NOAA-9 nonscanner irradiances by integrating the...
Journal of Geophysical Research | 2011
Seiji Kato; Fred G. Rose; Sunny Sun-Mack; Walter F. Miller; Yan Chen; David A. Rutan; Graeme L. Stephens; Norman G. Loeb; Patrick Minnis; Bruce A. Wielicki; David M. Winker; Thomas P. Charlock; Paul W. Stackhouse; Kuan-Man Xu; William D. Collins