Fred G. Rose
Analytical Services
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fred G. Rose.
Journal of Climate | 2013
Seiji Kato; Norman G. Loeb; Fred G. Rose; David R. Doelling; David A. Rutan; Thomas E. Caldwell; Lisan Yu; Robert A. Weller
AbstractThe estimate of surface irradiance on a global scale is possible through radiative transfer calculations using satellite-retrieved surface, cloud, and aerosol properties as input. Computed top-of-atmosphere (TOA) irradiances, however, do not necessarily agree with observation-based values, for example, from the Clouds and the Earth’s Radiant Energy System (CERES). This paper presents a method to determine surface irradiances using observational constraints of TOA irradiance from CERES. A Lagrange multiplier procedure is used to objectively adjust inputs based on their uncertainties such that the computed TOA irradiance is consistent with CERES-derived irradiance to within the uncertainty. These input adjustments are then used to determine surface irradiance adjustments. Observations by the Atmospheric Infrared Sounder (AIRS), Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) that are a part of the NASA ...
Bulletin of the American Meteorological Society | 2013
Bruce A. Wielicki; David F. Young; M. G. Mlynczak; Kurt J. Thome; Stephen S. Leroy; James M. Corliss; J. G. Anderson; Chi O. Ao; Richard J. Bantges; Fred A. Best; Kevin W. Bowman; Helen E. Brindley; James J. Butler; William D. Collins; John Andrew Dykema; David R. Doelling; Daniel R. Feldman; Nigel P. Fox; Xianglei Huang; Robert E. Holz; Yi Huang; Zhonghai Jin; D. Jennings; David G. Johnson; K. Jucks; Seima Kato; Daniel Bernard Kirk-Davidoff; Robert O. Knuteson; Greg Kopp; David P. Kratz
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREOs inherently high absolute accuracy will be verified and traceable on orbit to Systeme Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earths thermal infrared spectrum (5–50 μm), the spectrum of solar radiation reflected by the Earth and its atmosphere (320–2300 nm), and radio occultation refractivity from which...
Journal of Geophysical Research | 2012
Lazaros Oreopoulos; Eli J. Mlawer; Jennifer Delamere; Timothy R. Shippert; Jason N. S. Cole; Boris Fomin; Michael J. Iacono; Zhonghai Jin; Jiangning Li; James Manners; P. Räisänen; Fred G. Rose; Yuanchong Zhang; Michael J. Wilson; William B. Rossow
[1] We present results from Phase I of the Continual Intercomparison of Radiation Codes (CIRC), intended as an evolving and regularly updated reference source for evaluation of radiative transfer (RT) codes used in global climate models and other atmospheric applications. CIRC differs from previous intercomparisons in that it relies on an observationally validated catalog of cases. The seven CIRC Phase I baseline cases, five cloud free and two with overcast liquid clouds, are built around observations by the Atmospheric Radiation Measurements program that satisfy the goals of Phase I, namely, to examine RT model performance in realistic, yet not overly complex, atmospheric conditions. Besides the seven baseline cases, additional idealized “subcases” are also employed to facilitate interpretation of model errors. In addition to quantifying individual model performance with respect to reference line-by-line calculations, we also highlight RT code behavior for conditions of doubled CO2, issues arising from spectral specification of surface albedo, and the impact of cloud scattering in the thermal infrared. Our analysis suggests that improvements in the calculation of diffuse shortwave flux, shortwave absorption, and shortwave CO2 forcing as well as in the treatment of spectral surface albedo should be considered for many RT codes. On the other hand, longwave calculations are generally in agreement with the reference results. By expanding the range of conditions under which participating codes are tested, future CIRC phases will hopefully allow even more rigorous examination of RT codes.
Journal of Atmospheric and Oceanic Technology | 2005
Seiji Kato; Fred G. Rose; Thomas P. Charlock
Abstract The respective errors caused by the gamma-weighted two-stream approximation and the effective thickness approximation for computing the domain-averaged broadband shortwave irradiance are evaluated using cloud optical thicknesses derived from 1 h of radiance measurements by the Moderate Resolution Imaging Spectrometer (MODIS) over footprints of Clouds and the Earth’s Radiant Energy System (CERES) instruments. Domains are CERES footprints of which dimension varies approximately from 20 to 70 km, depending on the viewing zenith angle of the instruments. The average error in the top-of-atmosphere irradiance at a 30° solar zenith angle caused by the gamma-weighted two-stream approximation is 6.1 W m−2 (0.005 albedo bias) with a one-layer overcast cloud where a positive value indicates an overestimate by the approximation compared with the irradiance computed using the independent column approximation. Approximately one-half of the error is due to deviations of optical thickness distributions from a ga...
Journal of Atmospheric and Oceanic Technology | 2015
David A. Rutan; Seiji Kato; David R. Doelling; Fred G. Rose; Le Trang Nguyen; Thomas E. Caldwell; Norman G. Loeb
AbstractThe Clouds and the Earth’s Radiant Energy System Synoptic (SYN1deg), edition 3, product provides climate-quality global 3-hourly 1° × 1°gridded top of atmosphere, in-atmosphere, and surface radiant fluxes. The in-atmosphere surface fluxes are computed hourly using a radiative transfer code based upon inputs from Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), 3-hourly geostationary (GEO) data, and meteorological assimilation data from the Goddard Earth Observing System. The GEO visible and infrared imager calibration is tied to MODIS to ensure uniform MODIS-like cloud properties across all satellite cloud datasets. Computed surface radiant fluxes are compared to surface observations at 85 globally distributed land (37) and ocean buoy (48) sites as well as several other publicly available global surface radiant flux data products. Computed monthly mean downward fluxes from SYN1deg have a bias (standard deviation) of 3.0 W m−2 (5.7%) for shortwave and −4.0 W m−2 (2.9%) for long...
Geophysical Research Letters | 2007
Norman G. Loeb; Bruce A. Wielicki; Fred G. Rose; David R. Doelling
Measurements from various instruments and analysis techniques are used to directly compare changes in Earth-atmosphere shortwave (SW) top-of-atmosphere (TOA) radiation between 2000 and 2005. Included in the comparison are estimates of TOA reflectance variability from published ground-based Earthshine observations and from new satellite-based CERES, MODIS and ISCCP results. The ground-based Earthshine data show an order-of-magnitude more variability in annual mean SW TOA flux than either CERES or ISCCP, while ISCCP and CERES SW TOA flux variability is consistent to 40%. Most of the variability in CERES TOA flux is shown to be dominated by variations global cloud fraction, as observed using coincident CERES and MODIS data. Idealized Earthshine simulations of TOA SW radiation variability for a lunar-based observer show far less variability than the ground-based Earthshine observations, but are still a factor of 4-5 times more variable than global CERES SW TOA flux results. Furthermore, while CERES global albedos exhibit a well-defined seasonal cycle each year, the seasonal cycle in the lunar Earthshine reflectance simulations is highly variable and out-of-phase from one year to the next. Radiative transfer model (RTM) approaches that use imager cloud and aerosol retrievals reproduce most of the change in SW TOA radiation observed in broadband CERES data. However, assumptions used to represent the spectral properties of the atmosphere, clouds, aerosols and surface in the RTM calculations can introduce significant uncertainties in annual mean changes in regional and global SW TOA flux.
Journal of Atmospheric and Oceanic Technology | 2013
Fred G. Rose; David A. Rutan; Thomas P. Charlock; G. Louis Smith; Seiji Kato
AbstractNASA’s Clouds and the Earth’s Radiant Energy System (CERES) project is responsible for operation and data processing of observations from scanning radiometers on board the Tropical Rainfall Measuring Mission (TRMM), Terra, Aqua, and Suomi National Polar-Orbiting Partnership (NPP) satellites. The clouds and radiative swath (CRS) CERES data product contains irradiances computed using a radiative transfer model for nearly all CERES footprints in addition to top-of-atmosphere (TOA) irradiances derived from observed radiances by CERES instruments. This paper describes a method to constrain computed irradiances by CERES-derived TOA irradiances using Lagrangian multipliers. Radiative transfer model inputs include profiles of atmospheric temperature, humidity, aerosols and ozone, surface temperature and albedo, and up to two sets of cloud properties for a CERES footprint. Those inputs are adjusted depending on predefined uncertainties to match computed TOA and CERES-derived TOA irradiance. Because CERES i...
Journal of Climate | 2008
Seiji Kato; Fred G. Rose; David A. Rutan; Thomas P. Charlock
Abstract The zonal mean atmospheric cloud radiative effect, defined as the difference between the top-of-the-atmosphere (TOA) and surface cloud radiative effects, is estimated from 3 yr of Clouds and the Earth’s Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of the cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of the mean zonal available potential energy. Because the atmospheric cooling ...
Journal of Climate | 2018
Norman G. Loeb; David R. Doelling; Hailan Wang; Wenying Su; Cathy Nguyen; Joseph G. Corbett; Lusheng Liang; Cristian Mitrescu; Fred G. Rose; Seiji Kato
The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earths Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 2 details the techniques used to geolocate and calibrate the CERES scanning radiometer measurements of shortwave and longwave radiance to invert the radiances to top-of-the-atmosphere (TOA) and surface fluxes following the Earth Radiation Budget Experiment (ERBE) approach, and to average the fluxes over various time and spatial scales to produce an ERBE-like product. Spacecraft ephemeris and sensor telemetry are used with calibration coefficients to produce a chronologically ordered data product called bidirectional scan (BDS) radiances. A spatially organized instrument Earth scan product is developed for the cloud-processing subsystem. The ERBE-like inversion subsystem converts BDS radiances to unfiltered instantaneous TOA and surface fluxes. The TOA fluxes are determined by using established ERBE techniques. Hourly TOA fluxes are computed from the instantaneous values by using ERBE methods. Hourly surface fluxes are estimated from TOA fluxes by using simple parameterizations based on recent research. The averaging process produces daily, monthly-hourly, and monthly means of TOA and surface fluxes at various scales. This product provides a continuation of the ERBE record.
Journal of Climate | 2011
Seiji Kato; Bruce A. Wielicki; Fred G. Rose; Xu Liu; Patrick C. Taylor; David P. Kratz; Martin G. Mlynczak; David F. Young; Nipa Phojanamongkolkij; Sunny Sun-Mack; Walter F. Miller; Yan Chen
AbstractVariability present at a satellite instrument sampling scale (small-scale variability) has been neglected in earlier simulations of atmospheric and cloud property change retrievals using spatially and temporally averaged spectral radiances. The effects of small-scale variability in the atmospheric change detection process are evaluated in this study. To simulate realistic atmospheric variability, top-of-the-atmosphere nadir-view longwave spectral radiances are computed at a high temporal (instantaneous) resolution with a 20-km field-of-view using cloud properties retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements, along with temperature humidity profiles obtained from reanalysis. Specifically, the effects of the variability on the necessary conditions for retrieving atmospheric changes by a linear regression are tested. The percentage error in the annual 10° zonal mean spectral radiance difference obtained by assuming linear combinations of individual perturbations e...