Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David B. Savage is active.

Publication


Featured researches published by David B. Savage.


Endocrinology | 2002

Induction of Adipocyte Complement-Related Protein of 30 Kilodaltons by PPARγ Agonists: A Potential Mechanism of Insulin Sensitization

Terry P. Combs; John A. Wagner; Joel P. Berger; Tom Doebber; Wen Jun Wang; Bei B. Zhang; Michael Tanen; Anders H. Berg; Stephen O'Rahilly; David B. Savage; Krishna Chatterjee; Stuart J. Weiss; Patrick Larson; Keith M. Gottesdiener; Barry J. Gertz; Maureen J. Charron; Philipp E. Scherer; David E. Moller

Adipocyte complement-related protein of 30 kDa (Acrp30, adiponectin, or AdipoQ) is a fat-derived secreted protein that circulates in plasma. Adipose tissue expression of Acrp30 is lower in insulin-resistant states and it is implicated in the regulation of in vivo insulin sensitivity. Here we have characterized the ability of PPARγ agonists to modulate Acrp30 expression. After chronic treatment of obese-diabetic (db/db) mice with PPARγ agonists (11 d), mean plasma Acrp30 protein levels increased (>3×). Similar effects were noted in a nongenetic type 2 diabetes model (fat-fed and low-dose streptozotocin-treated mice). In contrast, treatment of mice (db/db or fat-fed) with metformin or a PPARα agonist did not affect plasma Acrp30 protein levels. In a cohort of normal human subjects, 14-d treatment with rosiglitazone also produced a 130% increase in circulating Acrp30 levels vs. placebo. In addition, circulating Acrp30 levels were suppressed 5-fold in patients with severe insulin resistance in association wit...


Proceedings of the National Academy of Sciences of the United States of America | 2007

The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome

Kitt Falk Petersen; Sylvie Dufour; David B. Savage; Stefan Bilz; Gina Solomon; Shin Yonemitsu; Gary W. Cline; Douglas E. Befroy; Laura Zemany; Barbara B. Kahn; Xenophon Papademetris; Douglas L. Rothman; Gerald I. Shulman

We examined the hypothesis that insulin resistance in skeletal muscle promotes the development of atherogenic dyslipidemia, associated with the metabolic syndrome, by altering the distribution pattern of postprandial energy storage. Following ingestion of two high carbohydrate mixed meals, net muscle glycogen synthesis was reduced by ≈60% in young, lean, insulin-resistant subjects compared with a similar cohort of age–weight–body mass index–activity-matched, insulin-sensitive, control subjects. In contrast, hepatic de novo lipogenesis and hepatic triglyceride synthesis were both increased by >2-fold in the insulin-resistant subjects. These changes were associated with a 60% increase in plasma triglyceride concentrations and an ≈20% reduction in plasma high-density lipoprotein concentrations but no differences in plasma concentrations of TNF-α, IL-6, adiponectin, resistin, retinol binding protein-4, or intraabdominal fat volume. These data demonstrate that insulin resistance in skeletal muscle, due to decreased muscle glycogen synthesis, can promote atherogenic dyslipidemia by changing the pattern of ingested carbohydrate away from skeletal muscle glycogen synthesis into hepatic de novo lipogenesis, resulting in an increase in plasma triglyceride concentrations and a reduction in plasma high-density lipoprotein concentrations. Furthermore, insulin resistance in these subjects was independent of changes in the plasma concentrations of TNF-α, IL-6, high-molecular-weight adiponectin, resistin, retinol binding protein-4, or intraabdominal obesity, suggesting that these factors do not play a primary role in causing insulin resistance in the early stages of the metabolic syndrome.


Journal of Clinical Investigation | 2006

Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2

David B. Savage; Cheol Soo Choi; Varman T. Samuel; Zhen-Xiang Liu; Dongyan Zhang; Amy Wang; Xian-Man Zhang; Gary W. Cline; Xing Xian Yu; John G. Geisler; Sanjay Bhanot; Brett P. Monia; Gerald I. Shulman

Hepatic steatosis is a core feature of the metabolic syndrome and type 2 diabetes and leads to hepatic insulin resistance. Malonyl-CoA, generated by acetyl-CoA carboxylases 1 and 2 (Acc1 and Acc2), is a key regulator of both mitochondrial fatty acid oxidation and fat synthesis. We used a diet-induced rat model of nonalcoholic fatty liver disease (NAFLD) and hepatic insulin resistance to explore the impact of suppressing Acc1, Acc2, or both Acc1 and Acc2 on hepatic lipid levels and insulin sensitivity. While suppression of Acc1 or Acc2 expression with antisense oligonucleotides (ASOs) increased fat oxidation in rat hepatocytes, suppression of both enzymes with a single ASO was significantly more effective in promoting fat oxidation. Suppression of Acc1 also inhibited lipogenesis whereas Acc2 reduction had no effect on lipogenesis. In rats with NAFLD, suppression of both enzymes with a single ASO was required to significantly reduce hepatic malonyl-CoA levels in vivo, lower hepatic lipids (long-chain acyl-CoAs, diacylglycerol, and triglycerides), and improve hepatic insulin sensitivity. Plasma ketones were significantly elevated compared with controls in the fed state but not in the fasting state, indicating that lowering Acc1 and -2 expression increases hepatic fat oxidation specifically in the fed state. These studies suggest that pharmacological inhibition of Acc1 and -2 may be a novel approach in the treatment of NAFLD and hepatic insulin resistance.


Journal of Clinical Investigation | 2009

Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis.

Robert K. Semple; Alison Sleigh; Peter R. Murgatroyd; Claire Adams; Les Bluck; Sarah Jackson; Alessandra Vottero; Dipak Kanabar; Valentine Charlton-Menys; Paul N. Durrington; Maria A. Soos; T. Adrian Carpenter; David J. Lomas; Elaine Cochran; Phillip Gorden; Stephen O’Rahilly; David B. Savage

Metabolic dyslipidemia is characterized by high circulating triglyceride (TG) and low HDL cholesterol levels and is frequently accompanied by hepatic steatosis. Increased hepatic lipogenesis contributes to both of these problems. Because insulin fails to suppress gluconeogenesis but continues to stimulate lipogenesis in both obese and lipodystrophic insulin-resistant mice, it has been proposed that a selective postreceptor defect in hepatic insulin action is central to the pathogenesis of fatty liver and hypertriglyceridemia in these mice. Here we show that humans with generalized insulin resistance caused by either mutations in the insulin receptor gene or inhibitory antibodies specific for the insulin receptor uniformly exhibited low serum TG and normal HDL cholesterol levels. This was due at least in part to surprisingly low rates of de novo lipogenesis and was associated with low liver fat content and the production of TG-depleted VLDL cholesterol particles. In contrast, humans with a selective postreceptor defect in AKT2 manifest increased lipogenesis, elevated liver fat content, TG-enriched VLDL, hypertriglyceridemia, and low HDL cholesterol levels. People with lipodystrophy, a disorder characterized by particularly severe insulin resistance and dyslipidemia, demonstrated similar abnormalities. Collectively these data from humans with molecularly characterized forms of insulin resistance suggest that partial postreceptor hepatic insulin resistance is a key element in the development of metabolic dyslipidemia and hepatic steatosis.


Diabetologia | 2009

Correlation of the leptin:adiponectin ratio with measures of insulin resistance in non-diabetic individuals

Francis M. Finucane; J. Luan; Nicholas J. Wareham; Stephen J. Sharp; Stephen O’Rahilly; Beverley Balkau; A. Flyvbjerg; M. Walker; Kurt Højlund; John J. Nolan; David B. Savage

Aims/hypothesisObesity is the dominant cause of insulin resistance. In adult humans it is characterised by a combination of adipocyte hypertrophy and, to a lesser extent, adipocyte hyperplasia. As hypertrophic adipocytes secrete more leptin and less adiponectin, the plasma leptin:adiponectin ratio (LAR) has been proposed as a potentially useful measure of insulin resistance and vascular risk. We sought to assess the usefulness of the LAR as a measure of insulin resistance in non-diabetic white adults.MethodsLeptin and adiponectin levels were measured in 2,097 non-diabetic individuals from the Ely and European Group for the Study of Insulin Resistance (EGIR) Relationship between Insulin Sensitivity and Cardiovascular Risk (RISC) study cohorts. LAR was compared with fasting insulin and HOMA-derived insulin sensitivity (HOMA-S) in all individuals and with the insulin sensitivity index (M/I) from hyperinsulinaemic–euglycaemic clamp studies in 1,226 EGIR RISC participants.ResultsThe LAR was highly correlated with HOMA-S in men (r = −0.58, p = 4.5 × 10−33 and r = −0.65, p = 1.1 × 10−66 within the Ely and EGIR RISC study cohorts, respectively) and in women (r = −0.51, p = 2.8 × 10−36 and r = −0.61, p = 2.5 × 10−73). The LAR was also strongly correlated with the clamp M/I value (r = −0.52, p = 4.5 × 10−38 and r = −0.47, p = 6.6 × 10−40 in men and women, respectively), similar to correlations between HOMA-S and the M/I value.Conclusions/interpretationThe leptin:adiponectin ratio is a useful measure of insulin resistance in non-diabetic white adults. These data highlight the central role of adipocyte dysfunction in the pathogenesis of insulin resistance. Given that variations between fasting and postprandial leptin and adiponectin levels tend to be small, the leptin to adiponectin ratio might also have potential value in assessing insulin sensitivity in the non-fasted state.


Nature Genetics | 2012

Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA

Marjorie J. Lindhurst; Victoria Parker; Felicity Payne; Julie C. Sapp; Simon A. Rudge; Julie Harris; Alison M. Witkowski; Qifeng Zhang; Matthijs Groeneveld; Carol Scott; Allan Daly; Susan M. Huson; Laura L. Tosi; Michael L. Cunningham; Thomas N. Darling; Joseph Geer; Zoran Gucev; V. Reid Sutton; Christos Tziotzios; Adrian K. Dixon; Tim Helliwell; Stephen O'Rahilly; David B. Savage; Michael J. O. Wakelam; Inês Barroso; Leslie G. Biesecker; Robert K. Semple

The phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway is critical for cellular growth and metabolism. Correspondingly, loss of function of PTEN, a negative regulator of PI3K, or activating mutations in AKT1, AKT2 or AKT3 have been found in distinct disorders featuring overgrowth or hypoglycemia. We performed exome sequencing of DNA from unaffected and affected cells from an individual with an unclassified syndrome of congenital progressive segmental overgrowth of fibrous and adipose tissue and bone and identified the cancer-associated mutation encoding p.His1047Leu in PIK3CA, the gene that encodes the p110α catalytic subunit of PI3K, only in affected cells. Sequencing of PIK3CA in ten additional individuals with overlapping syndromes identified either the p.His1047Leu alteration or a second cancer-associated alteration, p.His1047Arg, in nine cases. Affected dermal fibroblasts showed enhanced basal and epidermal growth factor (EGF)-stimulated phosphatidylinositol 3,4,5-trisphosphate (PIP3) generation and concomitant activation of downstream signaling relative to their unaffected counterparts. Our findings characterize a distinct overgrowth syndrome, biochemically demonstrate activation of PI3K signaling and thereby identify a rational therapeutic target.


The New England Journal of Medicine | 2011

Perilipin Deficiency and Autosomal Dominant Partial Lipodystrophy

Sheetal Gandotra; Caroline Le Dour; William Bottomley; Pascale Cervera; Philippe Giral; Yves Reznik; Guillaume Charpentier; Martine Auclair; Marc Delepine; Inês Barroso; Robert K. Semple; Mark Lathrop; Olivier Lascols; Jacqueline Capeau; Stephen O'Rahilly; Jocelyne Magré; David B. Savage; Corinne Vigouroux

Perilipin is the most abundant adipocyte-specific protein that coats lipid droplets, and it is required for optimal lipid incorporation and release from the droplet. We identified two heterozygous frameshift mutations in the perilipin gene (PLIN1) in three families with partial lipodystrophy, severe dyslipidemia, and insulin-resistant diabetes. Subcutaneous fat from the patients was characterized by smaller-than-normal adipocytes, macrophage infiltration, and fibrosis. In contrast to wild-type perilipin, mutant forms of the protein failed to increase triglyceride accumulation when expressed heterologously in preadipocytes. These findings define a novel dominant form of inherited lipodystrophy and highlight the serious metabolic consequences of a primary defect in the formation of lipid droplets in adipose tissue.


Embo Molecular Medicine | 2009

Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC

Oscar Rubio-Cabezas; Vishwajeet Puri; Incoronata Murano; Vladimir Saudek; Robert K. Semple; Satya Dash; Caroline S S Hyden; William Bottomley; Corinne Vigouroux; Jocelyne Magré; Philippa Raymond-Barker; Peter R. Murgatroyd; Anil Chawla; Jeremy N. Skepper; V. Krishna Chatterjee; Sara Suliman; Ann Marie Patch; Anil K. Agarwal; Abhimanyu Garg; Inês Barroso; Saverio Cinti; Michael P. Czech; Jesús Argente; Stephen O'Rahilly; David B. Savage

Lipodystrophic syndromes are characterized by adipose tissue deficiency. Although rare, they are of considerable interest as they, like obesity, typically lead to ectopic lipid accumulation, dyslipidaemia and insulin resistant diabetes. In this paper we describe a female patient with partial lipodystrophy (affecting limb, femorogluteal and subcutaneous abdominal fat), white adipocytes with multiloculated lipid droplets and insulin‐resistant diabetes, who was found to be homozygous for a premature truncation mutation in the lipid droplet protein cell death‐inducing Dffa‐like effector C (CIDEC) (E186X). The truncation disrupts the highly conserved CIDE‐C domain and the mutant protein is mistargeted and fails to increase the lipid droplet size in transfected cells. In mice, Cidec deficiency also reduces fat mass and induces the formation of white adipocytes with multilocular lipid droplets, but in contrast to our patient, Cidec null mice are protected against diet‐induced obesity and insulin resistance. In addition to describing a novel autosomal recessive form of familial partial lipodystrophy, these observations also suggest that CIDEC is required for unilocular lipid droplet formation and optimal energy storage in human fat.


Diabetes | 2007

TCF7L2 Polymorphisms Modulate Proinsulin Levels and β-Cell Function in a British Europid Population

Ruth J. F. Loos; Paul W. Franks; Richard W. Francis; Inês Barroso; Fiona M. Gribble; David B. Savage; Ken K. Ong; Stephen O'Rahilly; Nicholas J. Wareham

Rapidly accumulating evidence shows that common T-cell transcription factor (TCF)7L2 polymorphisms confer risk of type 2 diabetes through unknown mechanisms. We examined the association between four TCF7L2 single nucleotide polymorphisms (SNPs), including rs7903146, and measures of insulin sensitivity and insulin secretion in 1,697 Europid men and women of the population-based MRC (Medical Research Council)-Ely study. The T-(minor) allele of rs7903146 was strongly and positively associated with fasting proinsulin (P = 4.55 × 10−9) and 32,33 split proinsulin (P = 1.72 × 10−4) relative to total insulin levels; i.e., differences between T/T and C/C homozygotes amounted to 21.9 and 18.4% respectively. Notably, the insulin-to-glucose ratio (IGR) at 30-min oral glucose tolerance test (OGTT), a frequently used surrogate of first-phase insulin secretion, was not associated with the TCF7L2 SNP (P > 0.7). However, the insulin response (IGR) at 60-min OGTT was significantly lower in T-allele carriers (P = 3.5 × 10−3). The T-allele was also associated with higher A1C concentrations (P = 1.2 × 10−2) and reduced β-cell function, assessed by homeostasis model assessment of β-cell function (P = 2.8 × 10−2). Similar results were obtained for the other TCF7L2 SNPs. Of note, both major genes involved in proinsulin processing (PC1, PC2) contain TCF-binding sites in their promoters. Our findings suggest that the TCF7L2 risk allele may predispose to type 2 diabetes by impairing β-cell proinsulin processing. The risk allele increases proinsulin levels and diminishes the 60-min but not 30-min insulin response during OGTT. The strong association between the TCF7L2 risk allele and fasting proinsulin but not insulin levels is notable, as, in this unselected and largely normoglycemic population, external influences on β-cell stress are unlikely to be major factors influencing the efficiency of proinsulin processing.


Cell Metabolism | 2006

Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance

Maura Agostini; Erik Schoenmakers; Catherine Mitchell; Istvan Szatmari; David B. Savage; Aaron G. Smith; Odelia Rajanayagam; Robert K. Semple; J. Luan; Louise Bath; Anthony Zalin; Mourad Labib; S. Kumar; Helen L. Simpson; Dirk Blom; David Marais; John W. R. Schwabe; Inês Barroso; Richard C. Trembath; Nicholas J. Wareham; Laszlo Nagy; Mark Gurnell; Stephen O'Rahilly; Krishna Chatterjee

Summary PPARγ is essential for adipogenesis and metabolic homeostasis. We describe mutations in the DNA and ligand binding domains of human PPARγ in lipodystrophic, severe insulin resistance. These receptor mutants lack DNA binding and transcriptional activity but can translocate to the nucleus, interact with PPARγ coactivators and inhibit coexpressed wild-type receptor. Expression of PPARγ target genes is markedly attenuated in mutation-containing versus receptor haploinsufficent primary cells, indicating that such dominant-negative inhibition operates in vivo. Our observations suggest that these mutants restrict wild-type PPARγ action via a non-DNA binding, transcriptional interference mechanism, which may involve sequestration of functionally limiting coactivators.

Collaboration


Dive into the David B. Savage's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen O’Rahilly

National Institute for Health Research

View shared research outputs
Top Co-Authors

Avatar

Inês Barroso

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire Adams

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge